用户名: 密码: 验证码:
增湿耦合湍流促进PM_(2.5)团聚技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PM_(2.5) AGGLOMERATION TECHNOLOGY OF HUMIDIFICATION COUPLED TURBULENCE
  • 作者:张德君
  • 英文作者:ZHANG De-jun;Jilin Electric Power (JEP) Siping Thermal Power Generation Company;
  • 关键词:燃煤电厂 ; PM_(2.5) ; 团聚 ; 数值模拟
  • 英文关键词:coal-fired power;;PM_(2.5);;agglomeration;;numerical simulation
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:吉林电力股份有限公司四平热电公司;
  • 出版日期:2018-11-22
  • 出版单位:环境工程
  • 年:2018
  • 期:v.36;No.245
  • 基金:国家科技支撑计划项目(2015AA05B01)
  • 语种:中文;
  • 页:HJGC201811019
  • 页数:5
  • CN:11
  • ISSN:11-2097/X
  • 分类号:33+90-93
摘要
基于增湿耦合湍流团聚装置,分别采用LS23320激光粒度分析仪和ELPI测定各团聚工况条件下飞灰颗粒的几何粒径和空气动力学粒径分布。结果表明:喷雾增湿及湍流耦合增湿条件下,飞灰几何粒径分布变化明显,但仅湍流团聚时,几何粒径分布变化不大;在空气动力学粒径≤10μm时,不同团聚工况下各级粒径段颗粒均有所减少,且湍流耦合增湿条件下减少幅度最大。采用离散相模型(DPM)模拟颗粒运动轨迹,经扰流单元扰流,不同粒径颗粒运动轨迹交叉在一起,可为颗粒团聚创造条件;采用颗粒群平衡模型(PBM)计算不同工况条件下颗粒团聚,计算规律与ELPI实测数据一致。
        Based on experimental system of humidification coupled turbulent agglomeration device, LS23320 laser particle size analyzer and ELPI were adopted to detect geometric particle size of fly ash particles and aerodynamic particle size distribution under the condition of each conditioned agglomeration, it was found that the change of geometric particle size distribution of fly ash was obvious under the condition of the spray humidification and turbulent coupling humidification, however, only when turbulent agglomeration occurred, the geometric particle size distribution had little change; in the span of aerodynamic particle size≤10 μm, the amount of particles in all levels of diameter decreased, moreover, the decreasing magnitude was highest under the condition of turbulent coupled humidification. Discrete phase model(DPM) was adopted to simulate particle trajectory, and then particles underwent disturbance from the disturbing unit, the trajectories of particles with different particle sizes were crossed together, creating conditions for agglomeration of particles; particles balance model(PBM)was used to calculate the particle agglomeration under different conditions, the calculation law was in conformance with ELPI measured data above.
引文
[1] 中国环境保护产业协会. 燃煤电厂烟气超低排放技术[M]. 北京:中国电力出版社,2015.
    [2] 向晓东.电凝交理论及在除尘应用中的新进展[J].建筑热能通风空调,1994(4):28-31.
    [3] 黄虹宾,田志鸿,时铭显.声波团聚微粒技术的进展与分析[J].中国石油大学学报(自然科学版),1995,19(6):168-174.
    [4] 何叶青,周寿增,宋琪,等.Nd-Fe-B粉末颗粒间的磁团聚现象及有限元模拟计算[J].功能材料,2002,33(2):154-157.
    [5] 王连泽,贺美陆,孟亚力.双极荷电粉尘颗粒凝聚的初步研究[J].环境工程,2002,20(3):31-33.
    [6] 魏凤,张军营,王春梅,等.煤燃烧超细颗粒物团聚促进技术的研究进展[J].煤炭转化,2003,26(3):27-31.
    [7] 许世森.细微尘粒的预团聚对旋风分离器高温除尘性能影响的实验研究[J].动力工程学报,1999,19(4):309-313.
    [8] 刘锦辉,杨林军,熊桂龙,等.LIFAC烟气脱硫中应用蒸汽相变促进细颗粒物脱除的实验研究[J].燃料化学学报,2011,39(1):1-7.
    [9] 贺美陆.湍流场中可吸入颗粒物双极荷电凝聚机理的实验研究[D].北京:清华大学,2004.
    [10] 孙德帅.声场与射流耦合作用下燃煤可吸入颗粒团聚研究[D].山东:青岛科技大学,2009.
    [11] 胡惠敏,李瑞阳,蔡萌,等.声波与其他方法联合作用脱除细颗粒物的研究进展[J].上海理工大学学报,2016,38(1):13-18.
    [12] 刘含笑,姚宇平,郦建国. 凝聚器二维单扰流柱流场中颗粒凝并模拟[J]. 动力工程学报, 2015,35(4):292-297.
    [13] 郑建祥,许帅,王京阳. 超细颗粒聚团模型及湍流聚并器聚团研究[J]. 中国电机工程学报, 2016,36(16):4389-4395.
    [14] 郑建祥,康文瑶,吕辛桐. 超细颗粒在声波作用下团聚的数值模拟[J]. 东北电力大学学报, 2016,36(3):26-33.
    [15] 郑建祥,许帅,王京阳,等. 基于微分代数积分矩量法的聚并器超细颗粒聚团研究[J]. 化工学报, 2017,68(1):119-128.
    [16] 章鹏飞,米建春,潘祖明. 烟气流速和装置元件角度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016,36(10):2714-2720.
    [17] Zaichik L I, Alipchenkov V M, Avetissian A R. Modelling turbulent collision rates of inertial particles[J]. International Journal of Heat and Fluid Flow, 2006(27): 937-944.
    [18] Leonid I Zaichik, Olivier Simonin, Vladimir M Alipchenkov. Turbulent collision rates of arbitrary-density particles[J]. International Journal of Heat and Mass Transfer, 2010,53(9): 1613-1620.
    [19] Zaichik L I, Simonin O, Alipchenkov V M. Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence[J]. Phys Fluids, 2003,15(10): 2995-3005.(通信作者):张德君(1963-),男,高级工程师,研究方向为发电企业工程建设及管理、新能源项目建设与发展。zhangdejun5500@163.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700