用户名: 密码: 验证码:
生物质石墨烯锦纶/涤纶抑菌纺织品开发与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and performance of biomass graphene nylon/polyester antibacterial textiles
  • 作者:张亚芳 ; 徐伯俊 ; 苏旭中 ; 刘新金
  • 英文作者:ZHANG Yafang;XU Bojun;SU Xuzhong;LIU Xinjin;Key Laboratory of Eco-Textiles,Ministry of Education, Jiangnan University;State Key Laboratorytraining Ground of Textile New Materials and Processing in Hubei;
  • 关键词:生物质石墨烯 ; 锦涤纶织物 ; 致病菌 ; 改良振荡烧瓶法 ; 抑菌活性
  • 英文关键词:Biomass graphene;;nylon/polyester fabric;;pathogenic bacteria;;modified oscillating flask method;;antibacterial activity
  • 中文刊名:SICO
  • 英文刊名:Journal of Silk
  • 机构:江南大学生态纺织教育部重点实验室;湖北省纺织新材料与先进加工技术省部共建国家重点实验室培育基地;
  • 出版日期:2019-03-25 09:19
  • 出版单位:丝绸
  • 年:2019
  • 期:v.56;No.660
  • 基金:江苏省自然科学基金项目(BK20170169);; 宿迁市科技支撑项目(H201607,H201602);; 江苏省产学研项目(BY2016022-27);江苏省产学研项目(BY2016022-16);; 江苏省先进纺织工程技术中心基金项目(XJFZ/2016/4);; 纺织服装产业河南省协同创新项目(hnfx14002);; 中央高校基本科研业务费专项资金资助项目(JUSRP51731B);; 新疆维吾尔族自治区重点研发专项(2017B02011);; 武汉纺织大学开放课题项目(ZDSYS201701,GCSYS201701)
  • 语种:中文;
  • 页:SICO201904010
  • 页数:7
  • CN:04
  • ISSN:33-1122/TS
  • 分类号:61-67
摘要
将GN与T分别以N/T 47/53、GN/T 47/53、GN/T 57/43、GN/T 85/15比例混合纺14.8 tex,捻系数358的紧密赛络纱,并织成橫密145/5 cm、平方米质量155 g/m~2相同规格纬平针针织物(其中N为普通锦纶,GN为含2.5‰生物质石墨烯的改性聚酰胺短纤,T为涤纶)。选用振荡烧瓶法定量评价四种GN/T织物对E.coli、S.aureus、C.albicans三种致病菌的抑菌活性。结果发现:GN比例越大,织物获得抑菌活性的时间越短;缩短接触时间,GN/T 57/43能在30 min内获得99%以上抑菌率,pH3~10条件下抑菌率达90%以上,洗涤50次后抑菌率达97.8%以上。得出在实际生产中为节约生产成本、提高纱线可纺性、获得较高抑菌活性的GN/T织物,综合选择57%的比例。
        GN and T were blended in a ratio of N/T 47/53, GN/T 47/53, GN/T 57/43, GN/T 85/15, respectively to spin 14.8 tex compact Siro yarns with the twist factor of 358, and woven into the weft plain stitch fabric with horizontal density of 145/5 cm and square meter quality of 155 g/m~2(N is ordinary nylon; GN is modified polyamide short fiber with 2.5‰ biomass graphene, and T is polyester). The oscillating flask method was used to quantitatively evaluate the antibacterial activity of four GN/T fabrics against E. coli, S. aureus and C. albicans. The results showed that the larger the GN ratio, the shorter the time for the fabric to obtain antibacterial activity. After the contact time was shortened, GN/T 57/43 could obtain more than 99% antibacterial rate within 30 min, and the antibacterial rate under pH3-10 conditions was more than 90%. After washing 50 times, the antibacterial rate was over 97.8%. Therefore, in the actual production, 57% ratio should be chosen for GN/T fabrics in order to save production cost, improve yarn spinnability, and obtain high antibacterial activity.
引文
[1]牛梅. 抑菌羊毛纤维制备及其结构与性能研究[D]. 太原: 太原理工大学, 2009.NIU Mei. Preparation and Structure and Properties of Antibacterial Wool Fibers [D]. Taiyuan: Taiyuan University of Technology, 2009.
    [2]杜磊. 基于静电纺丝技术的双组份/双载药敷料可控制备及其性能研究[D]. 杭州: 浙江理工大学, 2017.DU Lei. Controllable Preparation of Bicomponent/Double Load Drug Dressings Based on Electrospinning Technologyand Its Properties[D]. Hangzhou: Zhejiang Sci-Tech University,2017.
    [3]张雨菲, 李友良, 姚远, 等. 壳聚糖纳米银溶液的稳定性及在织物抑菌整理上的应用[J]. 高等学校化学学报, 2012, 33(8): 1860-1865.ZHANG Yufei, LI Youliang, YAO Yuan, et al. Stabiliby of chitosan-stablized nanosilver solutions and its application for antibacterial durability of cotton fabrics[J].Chemical Journal of Chinese Universities, 2012, 33(8): 1860-1865.
    [4]丁晨, 赵兵, 祁宁. 基于银纳米线导电网络的电子纺织品[J]. 化学进展, 2017, 29(8): 892-901.DING Chen, ZHAO Bing, QI Ning. Electronic textiles based on silver nanowire conductive network [J]. Progress in Chemistry, 2017, 29(8): 892-901.
    [5]张冬梅, 刘艳, 申乾宏, 等. 织物用多功能疏水、疏油、抑菌整理剂[J]. 稀有金属材料与工程, 2012, 41(S3): 655-658.ZHANG Dongmei, LIU Yan, SHEN Qianhong, et al. Antibacterial water and oil repellent multifunctional finishing agent for fabric[J]. Rare Metal Materials and Engineering, 2012, 41(S3): 655-658.
    [6]WANG Hongbo, WANG Jinyan, HONG Jianhan, et al. Preparation and characterization of silver nanocomposite textile [J]. JCT Research, 2007(1): 101-106.
    [7]AKHAVAN O, GHADERI E. Toxicity of grapHene and grapHene oxide nanowalls against bacteria [J]. ACS Nano, 2010(10): 5731-5736.
    [8]TITOV A V, KRáL R. Pearson. Sandwiched grapHene-membrane superstructures [J]. ACS Nano, 2009(1): 229-234.
    [9]KAMAT J P, DEVASAGAYAM T, PRIYADARSINI K, et al. Oxidative damage induced by the fullerene C60 on pHotosensitization in rat liver microsomes [J]. Chemico-Biological Interactions, 1998, 114(3): 145-159.
    [10]AKHAVAN O, GHADERI E, ESFANDIAR A. Wrapping bacteria by grapHene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation [J]. The Journal of PHysical Chemistry B, 2011, 115(19): 6279-6288.
    [11]WANG S H, HOU W S, WEI L Q, et al. Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface[J]. Surface and Coatings Technology, 2007, 202: 460-465.
    [12]ELZATAHRY A A, AL-ENIZI A M, ELSAYED E A, et al. Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity [J]. International Journal of Nanomedicine, 2012, 7(14): 2829-2832.
    [13]MEI Y, YAO C, FAN K, et al. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydropHilic flexible spacers [J]. Journal of Membrane Science, 2012, 417: 20-27.
    [14]LARIKOV D D, KARGA M, SAHARI A, et al. Antimicrobial surfaces using covalently bound polyallylamine[J]. Biomacromolecules, 2014, 15(1): 169-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700