用户名: 密码: 验证码:
水深对沉水植物苦草(Vallisneria natans)和穗花狐尾藻(Myriophyllum spicatum)生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of water depth on growth of submerged macrophytes Vallisneria natans and Myriophyllum spicatum
  • 作者:李启升 ; 黄强 ; 李永吉 ; 韩燕青 ; 靳辉 ; 何虎 ; 李宽意
  • 英文作者:LI Qisheng;HUANG Qiang;LI Yongji;HAN Yanqing;JIN Hui;HE Hu;LI Kuanyi;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;Shanghai Engineering Research Center of Aquaculture,Shanghai Ocean University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;Lushan Botanical Garden,Jiangxi Province and Chinese Academy of Sciences;Yueyang Institute of Aquaculture;Sino-Danish College,University of Chinese Academy of Sciences;
  • 关键词:水深 ; 苦草 ; 穗花狐尾藻 ; 形态响应 ; 沉水植物
  • 英文关键词:Water depth;;Vallisneria natans;;Myriophyllum spicatum;;morphological response;;submerged macrophyte
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:上海海洋大学水产科学国家级实验教学示范中心;上海海洋大学上海水产养殖工程技术研究中心;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;江西省中国科学院庐山植物园;岳阳市水产科学研究所;中国科学院大学中丹学院;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07203-005);; 国家自然科学基金项目(31770509,41571086);; 中国科学院南京地理与湖泊研究所“一三五”自主部署项目(NIGLAS2018GH04);中国科学院科技服务网络计划重点项目(KFJ-STS-ZDTP-038-3)联合资助
  • 语种:中文;
  • 页:FLKX201904015
  • 页数:10
  • CN:04
  • ISSN:32-1331/P
  • 分类号:157-166
摘要
水深是影响浅水湖泊沉水植物生长的主要因素之一.莲座型苦草(Vallisneria natans)和冠层型穗花狐尾藻(Myriophyllum spicatum)是我国长江中下游浅水湖泊中常见的沉水植物种类,二者在形态特征上具有较大的差异.在自然水体中,水深变化对这两种植物的生长以及竞争格局的影响还有待研究.本文设计了3个水深梯度(水深0.5、1.5、2.5 m),探讨混栽条件下苦草和穗花狐尾藻生长和竞争格局对水深变化的响应.结果显示在实验系统内,中水深(1.5 m)处理组对两种植物的生长均最有利,表现为两种植物的相对生长率和生物量均最高.低水深(0.5 m)处理组苦草的生物量和相对生长率均显著低于高水深(2.5 m)处理组;穗花狐尾藻则相反,高水深对其生长的抑制作用更大. 2种沉水植物在高水深胁迫时均表现出地上部分(叶长或茎长)增加,地下部分(根长)减少的形态响应特征.此外,随着水深由高到低,苦草与穗花狐尾藻生物量之比逐渐减小,表明苦草在两种植物中的竞争优势逐渐降低.研究表明湖泊水深变化不仅能够影响沉水植物的丰度,同时还可能会影响沉水植物的群落结构,而在我国浅水湖泊的生态修复实践中,在通过水位调控恢复沉水植物时,调控范围应考虑目标植物(如苦草)的光合特征.
        Water depth is one of the primary factors that affected submerged macrophyte growth. The rosette plant( Vallisneria natans) and canopy plant( Myriophyllum spicatum) are two common submerged macrophyte species in lakes of the middle and lower reaches of Yangtze River,China. The two species differ greatly in morphological characteristics. How the fluctuation of water depth could affect their growth and their competitive patterns remains to be studied. In this study,three water depth levels( 0.5 m,1.5 m and 2.5 m) were established to explore the responses of growth and competitive patterns of the two plant species to water depth under the condition of mixed planting. Our results showed that both macrophyte species favored in moderate water depth( 1.5 m) environment,with highest values of plant biomass and relative growth rate( RGR) in this water depth. The biomass and RGR of V.natans in low water depth treatment( 0.5 m) were significantly lower than that in high water depth treatment( 2.5 m). However,the opposite pattern was observed in M. spicatum,high water depth treatment has a greater repression effect on its growth. The two species showed the similar responses in morphology,with the indictors of the aboveground part( leaf length or shoot length) increased and that of the underground parts( root length) decreased under the stress of high water depth. Moreover,the biomass ratios of V. natans to M. spicatum are gradually reduced with the water depth,indicated that the competitive advantage of V. natans were increased with water depth. Our study indicates that water depth fluctuations in lakes may affect not only the abundance of submerged macrophytes,but also their community structure. In restoration of shallow lakes,our study suggests that the photosynthetic characteristics of the key species( such as V. natans) should be fully considered when adjusting water levels to rebuild submerged macrophytes.
引文
[1] Wang H,Pang Y,Liu SB et al. Research progress on influencing of environmental factors on the growth of submerged macrophytes. Acta Ecologica Sinica,2008,28(8):3958-3968. DOI:1000-0933(2008)08-3958-11.[王华,逄勇,刘申宝等.沉水植物生长影响因子研究进展.生态学报,2008,28(8):3958-3968.]
    [2] Scheffer M,Hosper SH,Meijer ML et al. Alternative equilibria in shallow lakes. Trends in Ecology&Evolution,1993,8(8):275-279. DOI:org/10.1016/0169-5347(93)90254-M.
    [3] Jeppesen E,Sndergaard M,Sndergaard M et al. The structuring role of submerged macrophytes in lakes. Ecological Studies,1998,131:427-441. DOI:10.1007/978-1-4612-0695-8.
    [4] Stansfield JH,Perrow MR,Tench LD et al. Submerged macrophytes as refuges for grazing Cladocera against fish[-3pt]predation:observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia,1997,342-343(1):229-240. DOI:10.1007/978-94-011-5648-6.
    [5] Maceina M,Bettoli P,Klussmann W et al. Effect of aquatic macrophyte removal on recruitment and growth of black crappies and white crappies in Lake Conroe,Texas. North American Journal of Fisheries Management,1991,11(4):556-563. DOI:10.1577/1548-8675(1991)011.
    [6] Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia,1990,200-201(1):367-377.
    [7] Li P. Researchs on the relationships between periphytic algae,phytoplankton and Vallisneria natans[Dissertation]. Wuhan:Huazhong Agricultural University,2012.[李佩.附着藻类及浮游植物与苦草的相互关系研究[学位论文].武汉:华中农业大学,2012.]
    [8] Middelboe AL,Markager S. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology,1997,37(3):553-568. DOI:10.1046/j.1365-2427.1997.00183.x.
    [9] Chambers PA,Kaiff J. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Canadian Journal of Fisheries&Aquatic Sciences,1985,42(42):701-709.
    [10] Li L,Bonser SP,Lan Z et al. Water depth affects reproductive allocation and reproductive allometry in the submerged macrophyte Vallisneria natans. Scientific Reports,2017,7(1):16842. DOI:10.1038/s41598-017-16719-1.
    [11] Li L,Lan Z,Chen J et al. Allocation to clonal and sexual reproduction and its plasticity in Vallisneria spinulosa along a waterdepth gradient. Ecosphere,2018,9(1):e02070.10.1002/ecs2.2070.
    [12] Beklioglu M,Altinayar G,Tan CO. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie,2006,166(4):535-556. DOI:10.1127/0003-9136/2006/0166-0535.
    [13] Karl EH,Donald F,Steven G et al. Aquatic vegetation and largemouth bass population responses to water-level variations in Lake Okeechobee,Florida(USA). Hydrobiologia,2005,539(1):225-237. DOI:10.1007/s10750-004-4876-1.
    [14] Geest GJV,Wolters H,Roozen FCJM et al. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia,2005,539(1):239-248. DOI:10.1007/s10750-004-4879-y.
    [15] Li DH,Yang S,Fang T et al. Recovery of aquatic macrophytes by use of water level regulation method in eutrophicated lakes—A case study of Wuli Lake,Wuxi city. Environmental Science&Technology,2008,31(12):59-62.[李敦海,杨劭,方涛等.水位调控法恢复富营养化水体沉水植物技术研究———以无锡五里湖为例.环境科学与技术,2008,31(12):59-62.]
    [16] Yu JL,Liu ZW,Li KY et al. Restoration of shallow lakes in subtropical and tropical China:response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water,2016,(8). DOI:10.3390/w8100438.
    [17] Liu ZW,He H,Hu JR et al. Successful restoration of a tropical shallow eutrophic lake:strong bottom-up but weak topdown effects recorded. Water Research,2018,146(2018):88-97. DOI:org/10.1016/j.watres.2018.09.007.
    [18] Chambers PA,Prepas EE. Competition and coexistence in submerged aquatic plant communities:the effects of species interacttions versus abiotic factors. Freshwater Biology,2010,23(3):541-550. DOI:10. 1111/j. 1365-2427.1990.tb00293.x.
    [19] Gao F,Zhang YM,Fei Y et al. Growth and photosynthetic fluorescence characteristics responses of four submersed macrophytes to rising water level. Journal of Ecology&Rural Environment,2017,33(4):341-348.[高汾,张毅敏,杨飞等.水位抬升对4种沉水植物生长及光合特性的影响.生态与农村环境学报,2017,33(4):341-348.]
    [20] Min FL,Zuo JC,Liu BY et al. Competition between Myriophyllum spicatum L. and Vallisneria natans(Lour.)Hara at different growth stages. Plant Science Journal,2016,34(1):47-55. DOI:10.11913/PSJ.2095-0837.2016.10047.[闵奋力,左进城,刘碧云等.穗状狐尾藻与不同生长期苦草种间竞争研究.植物科学学报,2016,34(1):47-55.]
    [21] Strand JA,Weisner SEB. Morphological plastic responses to water depth and wave exposure in an aquatic plant(Myriophyllum spicatum). Journal of Ecology,2001,89(2):166-175. DOI:10.1046/j.1365-2745.2001.00530.x.
    [22] Ge FJ,Liu BY,Lu ZY et al. Effects of light intensity on growth and phenolic contents of Myriophyllum spicatum. Environmental Science&Technology,2012,35(3):30-34.[葛芳杰,刘碧云,鲁志营等.穗花狐尾藻生长及酚类物质含量对光照强度的响应研究.环境科学与技术,2012,35(3):30-34.]
    [23] Liu WL,Hu WP,Chen YG et al. Temporal and spatial variation of aquatic macrophytes in west Taihu Lake. Acta Ecologica Sinica,2007,27(1):159-170. DOI:1000-0933(2007)01-0159-12.[刘伟龙,胡维平,陈永根等.西太湖水生植物时空变化.生态学报,2007,27(1):159-170.]
    [24] Jin XC,Tu QY eds. Lake eutrophication investigation specification:The second edition. Beijing:China Environmental Science Press,1990.[金相灿,屠清瑛.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,1990.]
    [25] Langhans RW,Tibbitts TW. Plant growth chamber handbook. 1997. DOI:10.1111/j.1469-8137.1998.149-7.x.
    [26] Zhang YL,Qin BQ,Chen WM et al. Analysis on distribution and variation of beam attenuation coefficient of Taihu Lake's water. Advances in Water Science,2003,14(4):447-453.[张运林,秦伯强,陈伟民等.太湖水体光学衰减系数的分布及其变化特征.水科学进展,2003,14(4):447-453.]
    [27] Li K,Liu Z,Gu B. Compensatory growth of a submerged macrophyte(Vallisneria spiralis)in response to partial leaf removal:effects of sediment nutrient levels. Aquatic Ecology,2010,44(4):701-707. DOI:10.1007/s10452-009-9308-x.
    [28] Havens KE,Sharfstein B,Brady MA et al. Recovery of submerged plants from high water stress in a large subtropical lake in Florida,USA. Aquatic Botany,2003,78(2004):67-82. DOI:10.1016/j.aquabot.2003.09.005.
    [29]zen A,Karapnar B,Kucuk I et al. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia,2010,646(1):61-72. DOI:10.1007/s10750-010-0179-x.
    [30] Hudon C,Lalonde S,Gagnon P. Ranking the effects of site exposure,plant growth form,water depth,and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences,2000,57(S1):31-42.
    [31] Sndergaard M,Phillips G,Hellsten S et al. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia,2013,704(1):165-177. DOI:10.1007/s10750-012-1389-1.
    [32] Fu H,Yuan GX,Cao T et al. Clonal growth and foraging behavior of a submerged macrophyte Vallisneria natans in response to water depth gradient. J Lake Sci,2012,24(5):705-711. DOI:10.18307/2012.0510.[符辉,袁桂香,曹特等.水深梯度对苦草(Vallisneria natans)克隆生长与觅食行为的影响.湖泊科学,2012,24(5):705-711.]
    [33] Xiao KY,Yu Dan,Wu ZH. Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans. Hydrobiologia,2007,589(1):265-272. DOI:10.1007/s10750-007-0740-4.
    [34] Gu YF,Wang J,Wang J et al. Morphological response and growth strategy of the submerged macrophyte Vallisneria natans under different water depths. J Lake Sci,2017,29(3):654-661. DOI:10.18307/2017.0314.[顾燕飞,王俊,王洁等.不同水深条件下沉水植物苦草的形态响应和生长策略.湖泊科学,2017,29(3):654-661.]
    [35] Yang X,Sun SY,Bai X et al. Influences of water depth gradient on photosynthetic fluorescence characteristics of Vallisneria natans. J Lake Sci,2014,26(6):879-886. DOI:10.18307/2014.0610.[杨鑫,孙淑雲,柏祥等.水深梯度对苦草(Vallisneria natans)光合荧光特性的影响.湖泊科学,2014,26(6):879-886.]
    [36] Zhu DT,Li MH. Effects of environmental factors and their interaction on Vallisneria natans by orthogonal test. Acta Ecologica Sinica,2010,30(23):6451-6459.[朱丹婷,李铭红,乔宁宁.正交试验法分析环境因子对苦草生长的影响.生态学报,2010,30(23):6451-6459.]
    [37] Su WH,Zhang GF,Zhang YS et al. Photosynthetic characteristics of five submerged macrophytes. Acta Hydrobiologica Sinica,2004,28(4):391-395. DOI:1000-3207(2004)04-0391-05.[苏文华,张光飞,张云孙等. 5种沉水植物的光合特征.水生生物学报,2004,28(4):391-395.]
    [38] Bai X,Chen KN,Ren KX et al. Effect of growth of Myriophyllum on nitrogen and phosphorus in sediments under different water depth conditions. Ecology and Environmental Sciences,2011,20(6):1086-1091. DOI:1674-5906(2011)06-07-1086-06.[柏祥,陈开宁,任奎晓等.不同水深条件下狐尾藻生长对沉积物氮磷的影响.生态环境学报,2011,20(6):1086-1091.]
    [39] Li KY,Liu ZW,Wang CZ et al. Effect of low dissolved oxygen on the growth of Vallisneria spiralis. Resources and Environment in the Yangtze Basin,2006,15(5):670-673. DOI:1004-8227(2006)05-0670-04.[李宽意,刘正文,王春忠等.低溶解氧对苦草生长的影响.长江流域资源与环境,2006,15(5):670-673.]
    [40] You H. Study on the ecological adaptiveness of five submerged macrophytes to eutrophic water[Dissertation]. Nanjing:Nanjing Agricultural University,2006.[游灏.五种沉水植物对富营养化水体的生态适应性研究[学位论文].南京:南京农业大学,2006.]
    [41] Yang Y,Yu D,Li Y et al. Phenotypic plasticity of two submersed plants in response to flooding. Journal of Freshwater Ecology,2004,19(1):69-76. DOI:10.1080/02705060.2004.9664514.
    [42] Wang Q,Zhou XD,Luo JH et al. Remote sensing monitoring and analysis of dominant species of submerged vegetation in Taihu Lake over last 30 years. Water Resources Protection,2016,32(5):123-129.[王琪,周兴东,罗菊花等.近30年太湖沉水植物优势种遥感监测及变化分析.水资源保护,2016,32(5):123-129.]
    [43] Xiong F,Li WC,Pan JZ et al. Distribution and community structure characteristics of submerged macrophytes in Lake Fuxian,Yunnan Province. Acta Botanica Yunnanica,2006,28(3):277-282. DOI:0253-2700(2006)03-277-06.[熊飞,李文朝,潘继征等.云南抚仙湖沉水植物分布及群落结构特征.云南植物研究,2006,28(3):277-282.]
    [44] Li W,He L,Zhu TS et al. Distribution and leaf C,N,P stoichiometry of Vallisneria natans in response to various water depths in a large mesotrophic lake,Lake Erhai,China. J Lake Sci,2014,26(4):585-592. DOI:10.18307/2014.0413.[李威,何亮,朱天顺等.洱海苦草(Vallisneria natans)水深分布和叶片C、N、P化学计量学对不同水深的响应.湖泊科学,2014,26(4):585-592.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700