用户名: 密码: 验证码:
基于增益媒质的亚波长纳米阵列超传输特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Extraordinary Optical Transmission Coupled to A Gain Medium Based on The Subwavelength Nanostructure
  • 作者:孙龙 ; 牛凯坤 ; 冯大政 ; 王石语 ; 邢孟道
  • 英文作者:SUN Long;NIU Kai-kun;FENG Da-zheng;WANG Shi-yu;XING Meng-dao;National Lab of Radar Signal Processing, Xidian University;Collaborative Innovation Center of Information Sensing and Understanding, Xidian University;No.38 Research Institute,CETC;Key Lab of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University;School of Technical Physics, Xidian University;
  • 关键词:增益媒质 ; 时域有限差分方法 ; 异常光学传输
  • 英文关键词:gain material;;finite-difference time-domain(FDTD) method;;extraordinary optical transmission
  • 中文刊名:FGXB
  • 英文刊名:Chinese Journal of Luminescence
  • 机构:西安电子科技大学雷达信号处理国家重点实验室;西安电子科技大学信息感知技术协同创新中心;中国电子科技集团公司第三十八研究所;安徽大学信号与信息处理教育部重点实验室;西安电子科技大学技术物理学院;
  • 出版日期:2019-03-15
  • 出版单位:发光学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61601166,61701001,61701003);国家自然科学基金优秀青年科学基金(61722101);; 安徽省高等学校自然科学研究项目(KJ2017ZD02,KJ2017ZD51)资助~~
  • 语种:中文;
  • 页:FGXB201903013
  • 页数:8
  • CN:03
  • ISSN:22-1116/O4
  • 分类号:92-99
摘要
增益媒质因其优良的放大特性和广阔的应用前景吸引了国内外学者的广泛关注,然而,激发增益媒质补偿欧姆损耗需要较强的外部能量,极大地限制了增益媒质的发展前景。本文使用辅助位微分方程的时域有限差分方法研究了麦克斯韦方程与半经典的电子速率方程相耦合的自洽仿真过程,并基于四能级原子系统描述的增益媒质和异常光传输现象间的耦合机制,提出了一种新颖的含亚波长周期裂缝的增益/金属/增益纳米阵列结构。研究结果表明,本文提出的纳米结构可以使用较低外部能量实现完全补偿欧姆损耗的目的。该结果对深入了解纳米结构和增益媒质之间的相互作用有着重要的意义。
        As a focus on the study of metamaterials, the gain medium attracts a wide range of attention due to its excellent amplification characteristics. However, high external energy is needed to excite the gain material to compensate loss or create laser, which greatly limits the practical application of the gain materials. We investigate a computational scheme allowing for a self-consistent treatment of periodic arrays of subwavelength apertures coupled to a gain material incorporated into the nanostructure. Taking advantage of the amplification of extraordinary optical transmission(EOT) phenomena, the resonant electric-field intensity is enhanced associated with the effect of surface plasmon polariton(SPP). We present a simulation framework allowing for EOT coupled to gain media, which enables complete Ohmic loss compensation by using a moderate pump intensity level. The active gain media is represented with four-level atomic system by solving the semiclassical electronic rate equations. Finite-difference time-domain(FDTD) method incorporated with auxiliary differential equation is used to simulate electromagnetic field. Our results can be used as instruction for the realistic experiments, and provide a deep insight into the interaction between nanostructure and gain materials.
引文
[1] SHALAEV V M. Optical negative-index metamaterials [J]. Nat. Photon., 2007,1(1):41-48.
    [2] SOUKOULIS C M,LINDEN S,WEGENER M. Negative refractive index at optical wavelengths [J]. Science, 2007,315(5808):47-49.
    [3] BERMEL P,LIDORIKIS E,FINK Y,et al.. Active materials embedded in photonic crystals and coupled to electromagnetic radiation [J]. Phys. Rev. B, 2006,73(16):165125-1-8.
    [4] JIANG X Y,SOUKOULIS C M. Time dependent theory for random lasers [J]. Phys. Rev. Lett., 2000,85(1):70-73.
    [5] PENDRY J B. Negative refraction makes a perfect lens [J]. Phys. Rev. Lett., 2000,85(18):3966-3999.
    [6] SCHURIG D,MOCK J J,JUSTICE B J,et al.. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science,2006,314(5801):977-980.
    [7] LEONHARDT U. Optical conformal mapping [J]. Science, 2006,312(5781):1777-1780.
    [8] ZHAROV A A,SHADRIVOV I V,KIVSHAR Y S. Nonlinear properties of left-handed metamaterials [J]. Phys. Rev. Lett., 2003,91(3):037401-1-4.
    [9] FANG A A,HUANG Z X,KOSCHNY T,et al.. Loss compensated negative index material at optical wavelengths [J]. Photonics Nanostruct. -Fundam. Appl., 2012,10(3):276-280.
    [10] FANG A A,KOSCHNY T,SOUKOULIS C M. Optical anisotropic metamaterials:Negative refraction and focusing [J]. Phys. Rev. B, 2009,79(24):245127-1-7.
    [11] HUANG Z X,KOSCHNY T,SOUKOULIS C M. Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium [J]. Phys. Rev. Lett., 2012,108(18):187402-1-5.
    [12] HUANG Z X,DROULIAS S,KOSCHNY T,et al.. Mechanism of the metallic metamaterials coupled to the gain material [J]. Opt. Express, 2014,22(23):28596-28605.
    [13] NIU K K,HUANG Z X,FANG M,et al.. Coupling of gain medium and extraordinary optical transmission for effective loss compensation [J]. IEEE Access, 2018,6:14820-14826.
    [14] FANG M,HUANG Z X,KOSCHNY T,et al.. Electrodynamic modeling of quantum dot luminescence in plasmonic metamaterials [J]. ACS Photon., 2016,3(4):558-563.
    [15] GENET C,EBBESEN T. Light in tiny holes [J]. Nature, 2007,445(7123):39-46.
    [16] MARANI R,D'ORAZIO A,PETRUZZELLI V,et al.. Gain-assisted extraordinary optical transmission through periodic arrays of subwavelength apertures [J]. New J. Phys., 2012,14(1):013020-1-16.
    [17] LI X H,CHOY W C H,HUO L J,et al.. Dual plasmonic nanostructures for high performance inverted organic solar cells [J]. Adv. Mater., 2012,24(22):3046-3052.
    [18] XIAO S M,DRACHEV V P,KILDISHEV A V,et al.. Loss-free and active optical negative-index metamaterials [J]. Nature, 2010,466(7307):735-738.
    [19] PLUM E,FEDOTOV V A,KUO P,et al.. Towards the lasing spaser:controlling metamaterial optical response with semiconductor quantum dots [J]. Opt. Express, 2009,17(10):8548-8551.
    [20] NIU K K,HUANG Z X,LI M Q,et al.. Optimization of the artificially anisotropic parameters in WCS-FDTD method for reducing numerical dispersion [J]. IEEE Trans. Antennas Propag., 2017,65(12):7389-7394.
    [21] JIN J M. The Finite Element Method in Electromagnetics [M]. 3rd ed. New Yrok:John Wiley & Sons, 2014.
    [22] HUANG Z X,CHENG L L,WU X L. The study of optical and electrical properties of short-pitch plasmonic solar cells [J]. IEEE Photon. J., 2016,8(4):4802109-1-9.
    [23] FANG A A,KOSCHNY T,WEGENER M,et al.. Self-consistent calculation of metamaterials with gain [J]. Phys. Rev. B, 2009,79(24):241104-1-4.
    [24] HUANG Z X,WU B,ZHANG H Y,et al.. Parallel implication of 3-D FDTD method in a four-level atomic system [J]. IEEE J Quantum Electron., 2012,48(7):908-914.
    [25] FANG A A,KOSCHNY T,SOUKOULIS C M. Self-consistent calculations of loss-compensated fishnet metamaterials [J]. Phys. Rev. B, 2010,82(12):121102-1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700