用户名: 密码: 验证码:
2-羟基-3-烯丙氧基丙基羟乙基纤维素的制备及温度敏感性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Temperature Responsive Properties of 2-Hydroxy-3-allyloxypropyl Hydroxyethyl Celluloses
  • 作者:代明允 ; 田野 ; 刘鹰 ; 具本植
  • 英文作者:DAI Ming-yun;TIAN Ye;LIU Ying;JU Ben-zhi;Aquacultural Engineering Research and Development Center, Dalian Ocean University;Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry Agriculture;Pilot National Laboratory for Marine Science and Technology (Qingdao);State Key Laboratory of Fine Chemicals, Dalian University of Technology;
  • 关键词:羟乙基纤维素 ; 温度敏感 ; 最低临界溶解温度 ; 生物降解 ; 功能材料
  • 英文关键词:hydroxyethyl cellulose;;thermosensitivity;;LCST;;biodegradation;;functional materials
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:大连海洋大学辽宁省水产设施养殖与装备工程研究中心;农业农村部北方海水增养殖重点实验室;青岛海洋科学与技术试点国家实验室;大连理工大学精细化工国家重点实验室;
  • 出版日期:2019-01-16 16:36
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家重点研发计划项目(2017YFD0701700);; 国家自然科学基金(21376041,31472312,31672673);; 农业农村部北方海水增养殖重点实验室开放课题(2018-KF-06);; 辽宁省海洋与渔业厅计划项目(201811)~~
  • 语种:中文;
  • 页:JXHG201904008
  • 页数:8
  • CN:04
  • ISSN:21-1203/TQ
  • 分类号:61-67+74
摘要
利用醚化反应将烯丙基缩水甘油醚(AGE)接枝到羟乙基纤维素骨架上,制备出系列具有温度敏感性的2-羟基-3-烯丙氧基丙基羟乙基纤维素(HAPEC)。HAPEC的最低临界溶解温度(LCST)可通过改变疏水基团的取代度进行调节。当HAPEC的取代度从1.30增加到2.71时,LCST从64.3℃降低到28.5℃。通过荧光光谱、动态光散射法(DLS)考察了HAPEC在水溶液中的自组装行为,并测定了临界胶束浓度(CMC)。结果表明,HAPEC在水溶液中可自组装形成胶束,并且CMC随着HAPEC取代度的增大而减小。当HAPEC的取代度从1.11增加到2.71时,CMC从0.145 g/L下降至0.021 g/L。参照ASTMD 5988—03标准并利用SEM测试了HAPEC的生物降解度及降解前、后HAPEC样品形貌的变化。HAPEC具有良好的生物降解性,降解90 d后,其形貌变化明显,生物降解程度可高达36.5%。
        A thermoresponsive polymer, 2-hydroxy-3-allyloxypropyl hydroxyethyl cellulose(HAPEC), was prepared by etherification reaction, which grafted allyl glycidyl ether(AGE)(hydrophobic agent) onto hydroxyethyl cellulose(HEC). The lowest critical solution temperature(LCST) of HAPEC could be adjusted by changing the molar substitution of hydrophobic groups. When the molar substitution of HAPEC increased from 1.30 to 2.71, the LCST decreased from 64.3 ℃ to 28.5 ℃. The self-assembly behavior of amphiphilic HAPEC in aqueous solution was investigated by fluorescence spectroscopy and dynamic light scattering(DLS). Its critical micelle concentration(CMC) was determined by DLS. The result demonstrated that HAPEC could be self-assembled to form micelles in solution, and its CMC decreased with the increase of its molar substitution. The CMC decreased from 0.145 g/L to 0.021 g/L by changing molar substitution of HAPEC from 1.11 to 2.71. The biodegradation of HAPEC was studied according to ASTMD 5988—03,SEM was used to compare the morphology of HAPEC samples before and after degradation. The result revealed that HAPEC had good biodegradability. After 90 days of degradation, its morphological changes were obvious and its biodegradation rate could be up to 36.5%.
引文
[1]Fernández-Quiroz D,álvaro González-Gómez,Lizardi-Mendoza J,et al.Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly(N-vinylcaprolactam)[J].Carbohydrate Polymers,2015,134(2):92-101.
    [2]Li Xiuyu(李秀瑜),Wu Wenhui(吴文辉),Wang Zhu(王著),et al.Study of pH-sensitive GG/PAA semi-interpenetrating polymer network[J].Fine Chemicals(精细化工),2005,22(8):600-603.
    [3]Jiang M Y,Ju X J,Fang L,et al.A novel,smart microsphere with K+-induced shrinking and aggregating properties based on a responsive host-guest system[J].ACS Applied Materials&Interfaces,2014,6(21):19405-19415.
    [4]Zhang H,Li J,Cui H,et al.Forward osmosis using electricresponsive polymer hydrogels as draw agents:influence of freezingthawing cycles,voltage,feed solutions on process performance[J].Chemical Engineering Journal,2015,259:814-819.
    [5]Maeda Y,Takaku S.Lower critical solution temperature behavior of poly(N-tetrahydrofurfuryl(meth)acrylamide)in water and alcoholwater mixtures[J].Journal of Physical Chemistry B,2010,114(41):13110-13115.
    [6]Zhai Z,Lei L,Song J,et al.Mechanically-sensitive hydrogels formed fromβ-cyclodextrin and an anionic surfactant containing a biphenyl group[J].Soft Matter,2016,12(10):2715-2720.
    [7]Tatsuma T,Takada K,Miyazaki T.UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel[J].Advanced Materials,2007,19(9):1249-1251.
    [8]Thévenot J,Oliveira H,Sandre O,et al.Magnetic responsive polymer composite materials[J].Chemical Society Reviews,2013,42(17):7099-7116.
    [9]Wei W,Li J,Qi X,et al.Synthesis and characterization of a multisensitive polysaccharide hydrogel for drug delivery[J].Carbohydrate Polymers,2017,177:275-283.
    [10]Chen C Y,Kim T H,Wu W C,et al.pH-dependent,thermosensitive polymeric nanocarriers for drug delivery to solid tumors[J].Biomaterials,2013,34(18):4501-4509.
    [11]Qiu Wenxiu(邱文秀),Cheng Han(程翰),Zhang Xianzheng(张先正),et al.Studies on stimulus responsive peptides and their applications in tumor diagnosis and treatment[J].Acta Polymerica Sinica(高分子学报),2018,(1):32-44.
    [12]Wang Q,Gu Z,Jamal S,et al.Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering[J].Tissue Engineering:Part A,2013,19(23/24):2586-2593.
    [13]Kim S,Lee K,Cha C.Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide)hydrogels using hydrophilic polymer crosslinkers[J].Journal of Biomaterials Science,Polymer Edition,2016,27(17):1698-1711.
    [14]DesireéAlesa Gyles,Lorena Diniz Castro,Roseane Maria RibeiroCosta.The designs and prominent biomedical advances of natural and synthetic hydrogel formulations[J].European Polymer Journal,2017,88:373-392.
    [15]Jin Shuping(金淑萍),Liu Mingzhu(柳明珠),Chen Shilan(陈世兰),et al.Responsive properties and applications of the intelligent polymers and hydrogels[J].Acta Physico-Chimica Sinica(物理化学学报),2007,23(3):438-446.
    [16]Zhang Y,Xu Y,Wei C,et al.Diselenide-containing poly(ε-caprolactone)-based thermo-responsive hydrogels with oxidation and reduction-triggered degradation[J].Materials Today Chemistry,2017,4:172-179.
    [17]Yuan Z,Fan Q,Dai X,et al.Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films[J].Carbohydrate Polymers,2014,102:431-437.
    [18]Hufendiek A,Barner-Kowollik C,Meier M A R.Renewable,fluorescent,and thermoresponsive:cellulose copolymers via light-induced ligation in solution[J].Polymer Chemistry,2015,6(12):2188-2191.
    [19]Halake K S,Lee J.Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores[J].Carbohydrate Polymers,2014,105:184-192.
    [20]?zkahraman B,Acar I,Emik S.Removal of Cu2+and Pb2+ions using CMC based thermoresponsive nanocomposite hydrogel[J].CleanSoil,Air,Water,2011,39(7):658-664.
    [21]Sanna R,Fortunati E,Alzari V,et al.Poly(N-vinylcaprolactam)nanocomposites containing nanocrystalline cellulose:a green approach to thermoresponsive hydrogels[J].Cellulose,2013,20(5):2393-2402.
    [22]Jeong B,Kim S W,Bae Y H.Thermosensitive sol-gel reversible hydrogels[J].Advanced Drug Delivery Reviews,2012,64(1):154-162.
    [23]Ciocoiu O N,Staikos G,Vasile C.Thermoresponsive behavior of sodium alginate grafted with poly(N-isopropylacrylamide)in aqueous media[J].Carbohydrate Polymers,2018,184:118-126.
    [24]Tian Y,Ju B,Zhang S,et al.Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal[J].Carbohydrate Polymers,2016,136:1209-1217.
    [25]Tian Y,Ju B,Zhang S,et al.Preparation and phase transition behaviors of temperature-responsive 3-butoxy-2-hydroxypropyl hydroxyethyl celluloses[J].Journal of Biomaterials Science Polymer Edition,2015,26(16):1100-1111.
    [26]Milo?evi?M,Krkobabi?A,Radoi?i?M,et al.Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2nanoparticles in soil[J].Carbohydrate Polymers,2017,158:77-84.
    [27]Ju B,Yan D,Zhang S.Micelles self-assembled from thermoresponsive2-hydroxy-3-butoxypropyl starches for drug delivery[J].Carbohydrate Polymers,2012,87(2):1404-1409.
    [28]Ju B,Zhang C,Zhang S.Thermoresponsive starch derivates with widely tuned LCSTs by introducing short oligo(ethylene glycol)spacers[J].Carbohydrate Polymers,2014,108(1):307-312.
    [29]Xia Y,Yin X,Burke N A D,et al.Thermal response of narrowdisperse poly(N-isopropylacrylamide)prepared by atom transfer radical polymerization[J].Macromolecules,2005,38(14):5937-5943.
    [30]Deshmukh S A,Sankaranarayanan S K R S,Suthar K,et al.Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide)oligomers through the LCST[J].Journal of Physical Chemistry B,2012,116(9):2651-2663.
    [31]Lendlein A,Shastri V P.Stimuli-sensitive polymers[J].Advanced Materials,2010,22(31):3344-3347.
    [32]Idziak I,Avoce D,Lessard D,et al.Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide)[J].Macromolecules,1999,32(4):1260-1263.
    [33]Tatar Güner P,Demirel A L.Effect of anions on the cloud point temperature of aqueous poly(2-ethyl-2-oxazoline)solutions[J].Journal of Physical Chemistry B,2012,116(49):14510-14514.
    [34]Liu X M,Wang L S,Wang L,et al.The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide[J].Biomaterials,2004,25(25):5659-5666.
    [35]Hou Jiazi(侯甲子),Zhang Wanxi(张万喜),Li Lili(李莉莉),et al.Study on biodegradability of cellulose fabrics[J].Acta Polymerica Sinica(高分子学报),2013,(1):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700