用户名: 密码: 验证码:
两性杂双子表面活性剂在水溶液中的自组装行为:耗散粒子动力学模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Self-assembly behaviors of zwitterionic heterogemini surfactant in aqueous solution: a dissipative particle dynamics simulation
  • 作者:徐毅 ; 毛新建 ; 郭思宇 ; 冯剑
  • 英文作者:XU Yi;MAO Xinjian;GUO Siyu;FENG Jian;School of Environmental and Chemical Engineering, Shanghai University;School of Material Science and Chemical Engineering, Chuzhou University;
  • 关键词:自组装 ; 两性杂双子表面活性剂 ; 耗散粒子动力学
  • 英文关键词:self-assembly;;zwitterionic heterogemini surfactant;;dissipative particle dynamics
  • 中文刊名:SDXZ
  • 英文刊名:Journal of Shanghai University(Natural Science Edition)
  • 机构:上海大学环境与化学工程学院;滁州学院材料与化学工程学院;
  • 出版日期:2018-12-31
  • 出版单位:上海大学学报(自然科学版)
  • 年:2018
  • 期:v.24;No.144
  • 基金:国家自然科学基金资助项目(21406136,51271105);; 上海市教委科研创新资助项目(14YZ015);; 创新团队发展计划资助项目(IRT13078)
  • 语种:中文;
  • 页:SDXZ201806006
  • 页数:13
  • CN:06
  • ISSN:31-1718/N
  • 分类号:64-76
摘要
利用耗散粒子动力学(dissipative particle dynamics, DPD)方法对CmH2m+1-PO4--(CH2)2-N+(CH3)2-Cn H2n+1 (简记为Cm-P-N-Cn,其中m, n=9, 9; 9, 12; 9, 15; 9, 18; 12,12; 12, 15; 12, 18; 15, 15; 15, 18; 18, 18)型系列两性杂双子表面活性剂在水溶液中的自组装行为开展了模拟研究,观察到了球状、柱状、平面网格、层状、蜂窝状,以及一维孔道、二维孔道和三维孔道等多种自组装结构的形成.所有模拟体系均随表面活性剂浓度的逐步升高而呈现出"球状—柱状—平面网格—三维孔道—层状—二维孔道—一维孔道"的结构转化规律.当m=n时,疏水链长度对于自组装行为有显著影响.此外, Cm-P-N-Cn分子内部各功能基团与水分子间的相互作用强弱和亲近程度可通过径向分布函数来完全体现.研究结果可为两性杂双子表面活性剂自组装行为的进一步研究及其实际应用提供新的见解.
        Self-assembly behaviors of a series of zwitterionic heterogemini surfactants Cm H2 m+1-PO4--(CH2)2-N+(CH3)2-Cn H2 n+1, abbreviated as Cm-P-N-Cn(m, n=9, 9; 9,12; 9, 15; 9, 18; 12, 12; 12, 15; 12, 18; 15, 15; 15, 18 and 18, 18), have been investigated in aqueous solution with a dissipative particle dynamics(DPD) method. Morphologies such as sphere(S), rod(R), planar grid(PG), lamella(L), honeycomb(H), one-, two-and threedimensional tunnels(1 DT, 2 DT and 3 DT) have been observed. With increase of surfactant concentration in the aqueous solution, a distinct transition path S—R—PG—3 DT—L—2 DT—1 DT is shown to be common for all simulated systems. Besides, the hydrophobic chain length has a significant influence on the self-assembly behaviors when m = n. Radial distribution function is an effective method for quantitative evaluation of interaction and relationship between each functional group in the Cm-P-N-Cn molecule and water. The results provide an insight into self-assembly behaviors of zwitterionic heterogemini surfactants and corresponding applications.
引文
[1] Rosen M J. Geminis:a new generation of surfactants[J]. Chem Tech, 1993, 23(3):30-33.
    [2]任伟东,牛瑞霞,廖凌之,等. Gemini型甜菜碱表面活性剂合成进展[J].化学通报, 2015, 78(1):10-15.
    [3]赵永,丁国华,刘峥.双子表面活性剂的合成与应用研究进展[J].精细石油化工, 2015, 32(2):75-80.
    [4]高南,李国荣,陈旭东.双子表面活性剂的合成及应用研究进展[J].日用化学工业, 2014, 44(11):644-651.
    [5]任立伟.钻井液用表面活性剂的研究与应用进展[J].中外能源, 2016, 21(4):34-39.
    [6]王军,陈玉菲,李妮妮,等.糖基季铵盐双子表面活性剂的缓蚀性能[J].腐蚀与防护, 2015, 36(2):144-147.
    [7]柴仕淦,贾钗,李欣怡,等.季铵盐型Gemini表面活性剂去除铜绿微囊藻[J].环境工程技术学报,2016, 6(1):8-15.
    [8] Bunton C A, Robinson L B, Schaak J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergents[J]. J Org Chem, 1971, 36(16):2346-2350.
    [9] Jaeger D A, Li B, Clark T. Cleavable double-chain surfactants with one cationic and one anionic head group that form vesicles[J]. Langmuir, 1996, 12(18):4314-4316.
    [10] Alami E O, Holmberg K. Heterogemini surfactants[J]. Colloid Interface Sci, 2003, 100:13-46.
    [11] Peresypkin A V, Menger F M. Zwitterionic geminis. Coacervate formation from a single organic compound[J]. Org Lett, 1999, 1(9):1347-1350.
    [12] Oda R, Huc I, Candau S J. Gemini surfactants, the effect of hydrophobic chain length and dissymmetry[J]. Chem Commun, 1997(21):2105-2106.
    [13] Menger F M, Peresypkin A V. A combinatorially-derived structural phase diagram for42 zwitterionic geminis[J]. J Am Chem Soc, 2001, 123(23):5614-5615.
    [14] Menger F M, Seredyuk V A, Apkarian R P, et al. Colloidal assemblies of branched geminis studied by cryo-etch-HRSEM[J]. J Am Chem Soc, 2002, 124(42):12408-12409.
    [15] Menger F M, Peresypkin A V. Strings of vesicles:flow behavior in an unusual type of aqueous gel[J]. J Am Chem Soc, 2003, 125(18):5340-5345.
    [16] Nyuta K, Yoshimura T, Esumi K. Surface tension and micellization properties of heterogemini surfactants containing quaternary ammonium salt and sulfobetaine moiety[J]. J Colloid Interface Sci, 2006, 301(1):267-273.
    [17] Nyuta K, Yoshimura T, Tsuchiya K, et al. Adsorption and aggregation properties of heterogemini surfactants containing a quaternary ammonium salt and a sugar moiety[J]. Langmuir,2006, 22(22):9187-9191.
    [18] Takamatsu Y, Iwata N, Tsubone K, et al. Synthesis and aqueous solution properties of novel anionic heterogemini surfactants containing a phosphate headgroup[J]. J Colloid Interface Sci,2009, 338(1):229-235.
    [19] Nyuta K, Yoshimura T, Tsuchiya K, et al. Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups 2:aggregation behavior studied by SANS, DLS, and cryo-TEM[J]. J Colloid Interface Sci, 2012, 370(1):80-85.
    [20] Liu S W, Wang X W, Chen L M, et al. Aggregation morphologies of a series of heterogemini surfactants with a hydroxyl head group in aqueous solution[J]. Soft Matter, 2014, 10(45):9177-9186.
    [21] Kwasniewska D, Staszak K, Wieczorek D, et al. Synthesis and interfacial activity of novel heterogemini sulfobetaines in aqueous solution[J]. J Surfactants Deterg, 2015, 18(3):477-486.
    [22] Yu E L, Mamat X, Zhang Y G, et al. Synthesis of novel zwitterionic heterogemini surfactants derived from fatty acid and investigation of their behavior at the air-water interface[J]. Lett Org Chem, 2015, 12(8):591-597.
    [23]赵剑曦.杂双子表面活性剂的研究进展[J].化学进展, 2005, 17(6):987-993.
    [24] Layn K M, Debenedetti P G, Prud’homme R K. A theoretical study of gemini surfactant phase behavior[J]. J Chem Phys, 1998, 109(13):5651-5658.
    [25] Xu Y, Yu X L, Yan H, et al. Self-assembly behaviors of heterogemini surfactant in aqueous solution investigated by dissipative particle dynamics[J]. J Dispersion Sci Technol, 2014, 35(9):1300-1307.
    [26] Xu Y, Wang L L, Yan H, et al. Dissipative particle dynamics simulation for the effect of interaction on the self-assembly behaviours of heterogemini surfactant in aqueous solution[J].Mol Phys, 2016, 114(2):304-314.
    [27] Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhys Lett, 1992, 19(3):155-160.
    [28] Koelman J M V A, Hoogerbrugge P J. Dynamic simulations of hard-sphere suspensions under steady shear[J]. Europhys Lett, 1993, 21(3):363-368.
    [29] Espa?nol P, Warren P B. Statistical mechanics of dissipative particle dynamics[J]. Europhys Lett, 1995, 30(4):191-196.
    [30] Groot R D, Warren P B. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation[J]. J Chem Phys, 1997, 107(11):4423-4435.
    [31] Groot R D, Madden T J. Dynamic simulation of diblock copolymer microphase separation[J]. J Chem Phys, 1998, 108(20):8713-8724.
    [32] Groot R D, Madden T J, Tildesley D J. On the role of hydrodynamic interactions in block copolymer microphase separation[J]. J Chem Phys, 1999, 110(19):9739-9749.
    [33] Yuan S L, Cai Z T, Xu G Y. Mesoscopic simulation of aggregates in surfactant/oil/water systems[J]. Chin J Chem, 2003, 21(2):112-116.
    [34] Espa?nol P. Hydrodynamics from dissipative particle dynamics[J]. Phys Rev E, 1995, 52(2):1734-1742.
    [35] Cao X R, Xu G Y, Li Y M, et al. Aggregation of poly(ethylene oxide)-poly(propylene oxide)block copolymers in aqueous solution:DPD simulation study[J]. J Phys Chem A, 2005, 109(45):10418-10423.
    [36] Yang C J, Chen X, Qiu H Y, et al. Dissipative particle dynamics simulation of phase behavior of aerosol OT/water system[J]. J Phys Chem B, 2006, 110(43):21735-21740.
    [37] Chen S, Guo C, Hu G H, et al. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles[J]. Colloid Polym Sci, 2007, 285(14):1543-1552.
    [38] Wu H, Xu J B, He X F, et al. Mesoscopic simulation of self-assembly in surfactant oligomers by dissipative particle dynamics[J]. Colloids Surf A, 2006, 290(1/2/3):239-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700