用户名: 密码: 验证码:
维生素B_(12)对脱氯功能蓝藻降解2,4,4'-三氯联苯的促进作用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Promotion Effects of Vitamin B_(12) on the Degradation of 2,4,4'-Trichlorobiphenyl by Nostoc PD-2
  • 作者:刘嘉裕 ; 肖文丰 ; 鲁莉萍 ; 张杭君
  • 英文作者:LIU Jia-yu;XIAO Wen-feng;LU Li-ping;ZHANG Hang-jun;College of Life and Environmental Sciences,Hangzhou Normal University;
  • 关键词:多氯联苯 ; 脱氯 ; 生物修复 ; 维生素B12 ; Nostoc ; PD-2
  • 英文关键词:polychlorinated biphenyls;;dechlorination;;bioremediation;;vitamin B12;;Nostoc PD-2
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:杭州师范大学生命与环境科学学院;
  • 出版日期:2014-07-16 10:26
  • 出版单位:环境科学
  • 年:2014
  • 期:v.35
  • 基金:国家自然科学基金项目(21077030);; 杭州师范大学优秀中青年教师支持计划项目(JTAS2011-01-012);; 杭州市“131”人才计划支持项目;; 杭州师范大学学生科研立项项目(1283XXM09);; 杭州师范大学本科生创新提升工程立项项目(CX2013078)
  • 语种:中文;
  • 页:HJKZ201408051
  • 页数:7
  • CN:08
  • ISSN:11-1895/X
  • 分类号:322-328
摘要
多氯联苯(polychlorinated biphenyls,PCBs)是环境中典型的持久性氯代有机污染物.PCBs污染的生物修复问题是当前环境科学领域的热点.以维生素B12(VB12)为实验材料,应用无氯培养体系,研究了VB12对脱氯功能蓝藻Nostoc PD-2脱氯降解2,4,4'-三氯联苯(PCB28)和降解过程基因表达的影响.结果表明,添加不同浓度的VB12能够促进Nostoc PD-2对PCB28的降解,添加浓度分别为10、100和1000μg·L-1的维生素B12时,与未添加VB12组相比,其7 d脱氯百分比分别提高了11.0%、19.7%和21.9%;添加10μg·L-1和100μg·L-1维生素B12条件下,PCB28的降解半衰期从5.53 d缩短至3.08 d.添加维生素B12后,细胞色素b6f复合体铁硫蛋白基因和双加氧酶基因的表达量均与PCB28的降解效果呈现显著相关性,铁硫蛋白基因表达量与PCB28降解效果的相关性更高.上述结果表明添加VB12能够有效促进脱氯功能藻种PD-2对PCB28的降解,并在基因水平上影响功能藻种的降解活性,这能够为开发高效生物降解PCBs的技术和脱氯功能藻种降解PCBs的机制提供科学依据.
        Polychlorinated biphenyls are typical persistent chlorinated organic compounds in the environment. Bioremediation of PCBcontaminated environment has become one of the hot issues. In this study,vitamin B12(VB12) and chlorine-free culture medium were applied to study the effects of VB12 on the degradation of 2,4,4'-trichlorobiphenyl(PCB28) by Nostoc PD-2 and the gene expression during the PCB-degradation process. Results showed that addition of different concentrations of vitamin B12 could improve the PCBbiodegradation rates by Nostoc PD-2. Compared with the control group,the 7-day degradation rate in 10 μg·L- 1,100 μg·L- 1,and1 000 μg·L- 1VB12-treated groups increased by 11. 0%,19. 7%,and 21. 9%,respectively. The degradation half-time decreased from5. 53 days(treated with 10 μg·L- 1VB12) to 3.08 days(treated with 100 μg·L- 1VB12). The expression of cytochrome b6 f complex iron-sulfur protein gene and dioxygenase gene showed significant correlation with PCB28-degradation by Nostoc PD-2. While the expression of iron-sulfur protein gene showed more significant correlation with PCB28-degradation. Results in this study indicated that adding VB12 could promote PCB28-degradation by Nostoc PD-2. Moreover,VB12 addition improved the PCB-degradation activity of Nostoc PD-2 at the gene level. The above conclusions could provide a new choice for developing efficient bioremediation technology for PCB-contaminated environment and a new insight into the PCB-biodegradation mechanism by Nostoc PD-2.
引文
[1]Moeckel C,Nizzetto L,Di Guardo A,et al.Persistent organic pollutants in Boreal and Montane soil profiles:distribution,evidence of processes and implications for global cycling[J].Environmental Science&Technology,2008,42(22):8374-8380.
    [2]毕新慧,储少刚,徐晓白.多氯联苯在水稻田中的迁移行为[J].环境科学学报,2001,21(4):454-458.
    [3]安琼,董元华,王辉,等.长江三角洲典型地区农田土壤中多氯联苯残留状况[J].环境科学,2006,27(3):528-532.
    [4]魏中青,刘丛强,梁小兵,等.贵州红枫湖地区水稻土多氯联苯和有机氯农药的残留[J].环境科学,2007,28(2):255-260.
    [5]Zani C,Gelatti U,Donato F,et al.Polychlorinated biphenyls in serum,liver and adipose tissue of subjects with hepatocellular carcinoma living in a highly polluted area[J].Chemosphere,2013,91(2):194-199.
    [6]Seok J,Seok J,Hwang K Y.Thermo-chemical destruction of polychlorinated biphenyls(PCBs)in waste insulating oil[J].Journal of Hazardous Materials,2005,124(1-3):133-138.
    [7]Field J A,Sierra-Alvarez R.Microbial transformation and degradation of polychlorinated biphenyls[J].Environmental Pollution,2008,155(1):1-12.
    [8]Ahmed M,Focht D D.Degradation of polychlorinated biphenyls by two species of Achromobacter[J].Canadian Journal of Microbiology,1973,19(1):47-52.
    [9]Harkness M R,McDermott J B,Abramowicz D A,et al.In situ stimulation of aerobic PCB biodegradation in Hudson River sediments[J].Science,1993,259(5094):503-507.
    [10]Rodrigues J L M,Kachel C A,Aiello M R,et al.Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb)and Rhodococcus sp.strain RHA1(fcb)[J].Applied and Environmental Microbiology,2006,72(4):2476-2482.
    [11]Tu C,Teng Y,Luo Y M,et al.Potential for biodegradation of polychlorinated biphenyls(PCBs)by Sinorhizobium meliloti[J].Journal of Hazardous Materials,2011,186(2-3):1438-1444.
    [12]Cvancarova M,Kresinova Z,Filipova A,et al.Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products[J].Chemosphere,2012,88(11):1317-1323.
    [13]Field J A,Stams A J M,Kato M,et al.Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia[J].Antonie van Leeuwenhoek,1995,67(1):47-77.
    [14]万金泉,胡梦蝶,马邕文,等.不同电子供体下三氯苯酚的还原脱氯机制研究[J].环境科学,2013,34(5):1808-1814.
    [15]李惠娣,杨琦,尚海涛.不同基质作为电子供体时四氯乙烯的降解研究[J].安全与环境工程,2006,13(4):45-49.
    [16]Nies L,Vogel T M.Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments[J].Applied and Environmental Microbiology,1990,56(9):2612-2617.
    [17]Fava F,Gentilucci S,Zanaroli G.Anaerobic biodegradation of weathered polychlorinated biphenyls(PCBs)in contaminated sediments of Porto Marghera(Venice Lagoon,Italy)[J].Chemosphere,2003,53(2):101-109.
    [18]Rodionov D A,Vitreschak A G,Mironov A A,et al.Comparative genomics of the vitamin B12metabolism and regulation in prokaryotes[J].Journal of Biological Chemistry,2003,278(42):41148-41159.
    [19]Croft M T,Lawrence A D,Raux-Deery E,et al.Algae acquire vitamin B12through a symbiotic relationship with bacteria[J].Nature,2005,438(7064):90-93.
    [20]Assaf-Anid N,Nies L,Vogel T M.Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12[J].Applied and Environmental Microbiology,1992,58(3):1057-1060.
    [21]Rippka R,Deruelles J,Waterbury J B,et al.Genertic assignments,strain histories and properties of pure cultures of cyanobacteria[J].Journal of General Microbiology,1979,111(1):1-61.
    [22]Kaneko T,Nakamura Y,Wolk C P,et al.Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp.strain PCC 7120[J].DNA Research,2001,8(5):205-213.
    [23]Correa P A,Lin L S,Just C L,et al.The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes[J].Environment International,2010,36(8):901-906.
    [24]DercováK,CicmanováJ,LoveckáP,et al.Isolation and identification of PCB-degrading microorganisms from contaminated sediments[J].International Biodeterioration&Biodegradation,2008,62(3):219-225.
    [25]Ganesh-Kumar S,Kalimuthu K,Jebakumar S R.A novel bacterium that degrades Aroclor-1254 and its bphc gene encodes an extradiol aromatic ring cleavage dioxygenase(EARCD)[J].Water Air and Soil Pollution,2013,224(6):1587.
    [26]Lambo A J,Patel T R.Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium,Hydrogenophaga taeniospiralis IA3-A,that cometabolize dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor 1221[J].Journal of Basic Microbiology,2006,46(2):94-107.
    [27]Rein A,Fernqvist M M,Mayer P,et al.Degradation of PCB congeners by bacterial strains[J].Applied Microbiology and Biotechnology,2007,77(2):469-481.
    [28]Abramowicz D A.Aerobic and anaerobic PCB biodegradation in the environment[J].Environmental Health Perspectives,1995,103(Suppl 5):97-99.
    [29]Molde K,Ciesielski T M,Fisk A T,et al.Associations between vitamins A and E and legacy POP levels in highly contaminated Greenland sharks(Somniosus microcephalus)[J].Science of the Total Environment,2013,442:445-454.
    [30]Woods S L,Trobaugh D J,Carter K J.Polychlorinated biphenyl reductive dechlorination by vitamin B12s:Thermodynamics and regiospecificity[J].Environmental Science&Technology,1999,33(6):857-863.
    [31]Anderson J M.Cytochrome b6f complex:Dynamic molecular organization,function and acclimation[J].Photosynthesis Research,1992,34(3):341-357.
    [32]Allen J F.Protein phosphorylation in regulation of photosynthesis[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,1992,1098(3):275-335.
    [33]Zhang H B,Xu D Q.PhotosystemⅡprotein phosphorylation and its physiological significance[J].Journal of Plant Physiology and Molecular Biology,2003,29(6):487-493.
    [34]Hirano M,Satoh K,Katoh S.Plastoquinone as a common link between photosynthesis and respiration in a blue-green alga[J].Photosynthesis Research,1980,1(3):149-162.
    [35]Scherer S,Bger P.Respiration of blue-green algae in the light[J].Archives of Microbiology,1982,132(4):329-332.
    [36]Kumamaru T,Suenaga H,Mitsuoka M,et al.Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase[J].Nature Biotechnology,1998,16(7):663-666.
    [37]Brühlmann F,Chen W.Tuning biphenyl dioxygenase for extended substrate specificity[J].Biotechnology and Bioengineering,1999,63(5):544-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700