用户名: 密码: 验证码:
基于通用迭代收缩阈值算法的多光谱生物发光断层成像
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multispectral bioluminescence tomography-based general iterative shrinkage and threshold algorithm
  • 作者:余景景 ; 李启越 ; 贺小伟
  • 英文作者:Jingjing YU;Qiyue LI;Xiaowei HE;School of Physics and Information Technology, Shaanxi Normal University;School of Information Sciences and Technology, Northwest University;
  • 关键词:多光谱生物发光断层成像 ; 通用迭代收缩阈值算法 ; 稀疏重建 ; 逆问题 ; 平滑剪切绝对偏差
  • 英文关键词:multispectral bioluminescence tomography;;general iterative shrinkage and threshold algorithm;;sparse reconstruction;;inverse problem;;smoothly clipped absolute deviation
  • 中文刊名:PZKX
  • 英文刊名:Scientia Sinica(Informationis)
  • 机构:陕西师范大学物理学与信息技术学院;西北大学信息科学与技术学院;
  • 出版日期:2019-05-20 13:44
  • 出版单位:中国科学:信息科学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(批准号:61401264,11571012);; 中央高校基本科研业务费专项资金(批准号:Gk201603025)资助项目
  • 语种:中文;
  • 页:PZKX201906006
  • 页数:13
  • CN:06
  • ISSN:11-5846/TP
  • 分类号:82-94
摘要
生物发光断层成像(bioluminescence tomography, BLT)是一种高灵敏非侵入式光学分子成像模态,但近红外光在生物组织中传输的复杂性及表面测量信息的有限性,对BLT光源重建算法提出了较高要求.本文提出了一种基于通用迭代收缩阈值(general iterative shrinkage and threshold,GIST)的BLT重建算法,采用非凸平滑剪切绝对偏差(smoothly clipped absolute deviation, SCAD)惩罚项,并通过迭代求解对非凸惩罚项有解析解的邻近算子问题来获得优化结果.此外,重建中也结合了多光谱测量和收缩可行域策略以降低逆问题的不适定性.为评估该算法的光源定位及多光源辨识能力,本文设计了多组仿真和物理仿体实验,并将GIST与几个典型稀疏重建算法进行了对比.实验结果表明GIST算法在不同光源深度和间隔距离的实验中在中心定位误差方面有较大优势.
        Bioluminescence tomography(BLT) is a noninvasive optical molecular imaging modality with high sensitivity. The complexity of near-infrared light transmission in biological tissues and the limitation of measurable information place a higher demand on BLT source reconstruction algorithms. In this paper, we present a reconstruction algorithm based on general iterative shrinkage and threshold(GIST), which uses a non-convex smoothly clipped absolute deviation function as the penalty term, and solves a proximal operator problem that has a closed-form solution for the penalty. In addition, we utilize multispectral measurements and an iteratively shrinking permissible region strategy to address the ill-posedness of the BLT inverse problem. To investigate the source location and multi-source resolution abilities of the proposed method, we perform comparisons between three typical sparse reconstruction algorithms based on several groups of simulations and phantom experiments.The reconstruction results demonstrate great advantages of the proposed GIST algorithm in terms of source location accuracy in all considered source settings with different source depths and separations.
引文
1 Willmann J K,van Bruggen N,Dinkelborg L M,et al.Molecular imaging in drug development.Nat Rev Drug Discov,2008,7:591-607
    2 Cong W,Wang G,Kumar D,et al.Practical reconstruction method for bioluminescence tomography.Opt Express,2005,13:6756
    3 Gu X,Zhang Q,Larcom L,et al.Three-dimensional bioluminescence tomography with model-based reconstruction.Opt Express,2004,12:3996-4000
    4 Zhang B,Wang K K H,Yu J,et al.Bioluminescence tomography-guided radiation therapy for preclinical research.Int J Radiat Oncology Biol Phys,2016,94:1144-1153
    5 Mollard S,Fanciullino R,Giacometti S,et al.In vivo bioluminescence tomography for monitoring breast tumor growth and metastatic spreading:comparative study and mathematical modeling.Sci Rep,2016,6:36173
    6 Guggenheim J A,Basevi H R A,Styles I B,et al.Bioluminescence tomography improves quantitative accuracy for pre-clinical imaging.In:Proceedings of Society of Photo-Optical Instrumentation Engineers(SPIE),Munich,2013.1-6
    7 Wang G,Li Y,Jiang M.Uniqueness theorems in bioluminescence tomography.Med Phys,2004,31:2289-2299
    8 Jiang M,He D.Mathematical problems of joint reconstruction for biomedical multi-modality imaging techniques.Sci Sin Math,2016,46:571-577[姜明,何迪.多模态生物医学成像联合重建的数学问题.中国科学:数学,2016,46:571-577]
    9 Chaudhari A J,Darvas F,Bading J R,et al.Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.Phys Med Biol,2005,50:5421-5441
    10 Dehghani H,Davis S C,Jiang S,et al.Spectrally resolved bioluminescence optical tomography.Opt Lett,2006,31:365-367
    11 Cong A X,Wang G.Multispectral bioluminescence tomography:methodology and simulation.Int J Biomed Imag,2006,2006:1-7
    12 Feng J,Jia K,Yan G,et al.An optimal permissible source region strategy for multispectral bioluminescence tomography.Opt Express,2008,16:15640
    13 Naser M A,Patterson M S.Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region.Biomed Opt Express,2011,2:3179-3192
    14 Naser M A,Patterson M S.Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography,normalized data,and optimized selection of the permissible source region.Biomed Opt Express,2011,2:169
    15 Beck A,Teboulle M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems.SIAM J Imag Sci,2009,2:183-202
    16 Gao Y,Wang K,Jiang S,et al.Bioluminescence tomography based on Gaussian weighted laplace prior regularization for in vivo morphological imaging of glioma.IEEE Trans Med Imag,2017,36:2343-2354
    17 Yu J,Zhang B,Iordachita I I,et al.Systematic study of target localization for bioluminescence tomography guided radiation therapy.Med Phys,2016,43:2619-2629
    18 Liu Y N,Yu J J,Qin X W,et al.The split bregman iteration algorithm for bioluminescence tomography.Sci Sin Inform,2014,44:284-294[刘亚楠,余景景,秦晓伟,等.Split Bregman迭代算法生物发光断层成像.中国科学:信息科学,2014,44:284-294]
    19 He X,Liang J,Wang X,et al.Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.Opt Express,2010,18:24825
    20 Xu Z B,Chang X Y,Xu F M,et al.L1/2regularization:a thresholding representation theory and a fast solver.IEEETrans Neural Netw Learning Syst,2012,23:1013-1027
    21 Yukawa M,Amari S I.?p-regularized least squares(0    22 Chen X,Yang D,Zhang Q,et al.L1/2regularization based numerical method for effective reconstruction of bioluminescence tomography.J Appl Phys,2014,115:184702
    23 Guo H,Yu J,He X,et al.Improved sparse reconstruction for fluorescence molecular tomography with L1/2regularization.Biomed Opt Express,2015,6:1648-1664
    24 Okawa S,Hoshi Y,Yamada Y.Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization.Biomed Opt Express,2011,2:3334-3348
    25 Fan J,Li R.Variable selection via nonconcave penalized likelihood and its oracle properties.J Am Stat Assoc,2001,96:1348-1360
    26 Wang H,Li R,Tsai C L.Tuning parameter selectors for the smoothly clipped absolute deviation method.Biometrika,2007,94:553-568
    27 Mehranian A,Rad H S,Rahmim A,et al.Smoothly clipped absolute deviation(SCAD)regularization for compressed sensing MRI using an augmented Lagrangian scheme.Magn Reson Imag,2013,31:1399-1411
    28 Gong P H,Zhang C S,Lu Z S,et al.A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems.In:Proceedings of the 30th International Conference on Machine Learning,Atlanta,2013.37-45
    29 Zhang C H,Zhang T.A general theory of concave regularization for high-dimensional sparse estimation problems.Stat Sci,2012,27:576-593
    30 Barzilai J,Borwein J M.Two-point step size gradient methods.IMA J Numer Anal,1988,8:141-148
    31 Yang Y,Wang K K H,Eslami S,et al.Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research.Med Phys,2015,42:1710-1720
    32 Hansen P C,O’Leary D P.The use of the L-curve in the regularization of discrete ill-posed problems.SIAM J Sci Comput,1993,14:1487-1503
    33 Alexandrakis G,Rannou F R,Chatziioannou A F.Tomographic bioluminescence imaging by use of a combined opticalPET(OPET)system:a computer simulation feasibility study.Phys Med Biol,2005,50:4225-4241
    34 Pekar J,Patterson M S.Fabrication and characterization of phantoms with tissue-like optical properties from 500 to700 nm.Med Laser Appl,2010,25:147-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700