用户名: 密码: 验证码:
压电驱动串级菱形位移放大微定位平台的设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of piezo-driven micro positioning platform with cascaded rhombus displacement magnifying mechanism
  • 作者:徐方超 ; 魏恒志 ; 孙凤 ; 陆鹤 ; 李强
  • 英文作者:Xu Fangchao;Wei Hengzhi;Sun Feng;Lu He;Li Qiang;School of Mechanical Engineering, Shenyang University of Technology;Shenyang Aerospace Xinle Limited Liability Company;
  • 关键词:微定位平台 ; 串级菱形位移放大机构 ; 大行程 ; 压电驱动
  • 英文关键词:micro positioning platform;;cascaded rhombus displacement magnifying mechanism;;large stroke;;piezo-driven
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:沈阳工业大学机械工程学院;沈阳航天新乐有限责任公司;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(51105257,51310105025);; 辽宁省高等学校创新人才支持计划(LR2017036);; 辽宁省博士启动资金(20170520177);; 辽宁省百千万人才工程(2015-47)项目资助
  • 语种:中文;
  • 页:YQXB201901007
  • 页数:10
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:55-64
摘要
针对二维微定位平台普遍具有体积大、行程小的问题,提出一种串级菱形位移放大机构,设计了嵌套式压电驱动二维微定位平台。根据平台运动原理建立了平台的力学模型并进行放大比分析;对平台进行静态特性分析,研究平台所受驱动力与输出位移的关系并进行理论与仿真对比,测试平台的输出位移特性;对平台进行动态特性分析,建立平台的动力学模型,研究平台闭环阶跃响应进行仿真与实验对比;对平台进行闭环最小位移分辨率、重复定位精度和平台运动偏转误差分析。实验结果表明,该压电驱动串级菱形位移放大微定位平台具有大行程、体积小、精度高的特点。
        Aiming at the problems of large size and small stroke of two-dimensional micro positioning platform, a nested two-dimensional piezo-driven micro positioning platform adopting cascaded rhombus displacement magnifying mechanism is designed. The structure and working principle of the micro positioning platform is introduced. The mechanical model of the micro positioning platform is established, and the effects of its structure parameters on the amplification ratio are investigated. The static characteristics analysis of the micro positioning platform with cascaded rhombus displacement magnifying mechanism is carried out. The relationships between the driving force and output displacement of the micro positioning platform are investigated, and the comparisons between theoretical results and simulation results are made. The output displacement characteristics of the micro positioning platform are tested. The dynamic characteristic analysis of the micro positioning platform is carried out, and the dynamic model of the micro positioning platform is established. The closed-loop step response of micro positioning platform is studied, and the comparisons between simulation results and testing results are made. The closed-loop minimum displacement resolution and the repetitive positioning accuracy of the micro positioning platform are analyzed by testing, and the offset error of the micro positioning platform in two directions is analyzed. The experimental results show that the piezo-driven micro positioning platform with cascaded rhombus displacement magnifying mechanism has the characteristics of large stroke, small volume and high precision.
引文
[1] 黄燕, 沈飞. 压电式高精度位移微扫描控制系统设计[J]. 光学精密工程, 2016, 24(10): 454-460.HUANG Y, SHEN F. Micro-scanning control system design for piezoelectric high-precision displacement[J]. Optics and Precision Engineering, 2016, 24(10): 454- 460.
    [2] 王凤钧, 罗志会, 陈思, 等. 基于CCD解调的光纤光栅电压传感器[J]. 电子测量与仪器学报, 2017, 31(11): 1726-1727.WANG F J, LUO ZH H, CHEN S,et al. Fiber Bragg grating voltage sensor based on CCD demodulation[J]. Journal of electronic Measurement and Instrumentation, 2017, 31(11): 1726- 1727.
    [3] TING Y, LI G, LIN C M. Controller design for high-frequency cutting using a piezo-driven micro stage[J]. Precision Engineering, 2011, 35(3): 455- 463.
    [4] 谢国兵, 刘卫国, 高爱华. 基于压电陶瓷的激光谐振腔长控制技术[J]. 兵工自动化, 2012, 31(3): 75- 78.XIE G B, LIU W G, GAO AI H. Laser resonant cavity length regulation technology based on piezoelectric ceramic[J]. Ordnance Industry Automation, 2012, 31(3): 75- 78.
    [5] 荣伟彬, 吴振广, 孙立宁. 一维大行程高分辨率纳米定位平台的设计与性能测试[J]. 纳米技术与精密工程, 2012, 10(5): 384- 389.RONG W B, WU ZH G, SUN L N. Design and performance test of one-dimensional long-range high resolution nano- positioning platform[J]. Nanotechnology and Precision Engineering, 2012, 10(5): 384- 389.
    [6] LI Y M, XU Q S. Design of a new decoupled xy flexure parallel kinematic manipulator with actuator isolation[C]. International Conference on Intelligent Robots and Systems,2008: 470- 475.
    [7] 张彦斐, 宫金良. 2自由度大行程微定位平台结构与参数设计[J]. 机械工程学报, 2010, 46(23): 30- 35.ZHANG Y F, GONG J L. The structure and parameter design of the 2-DOF large-stroke micro-positioning platform[J]. Journal of Mechanical Engineering, 2010, 46(23): 30- 35.
    [8] CHOI K B, LEE J J. Analysis and design of linear parallel compliant stage for ultra-precision motion based on 4-pp flexural joint mechanism[C]. International Conference on Smart Manufacturing Application, 2008: 35- 38.
    [9] 陈辉. 多维超精密定位系统建模与控制关键技术研究[D]. 南京: 东南大学, 2016.CHEN H. Research based on multi-dimensional ultra precision positioning system modeling and a key technology of control[D]. Nanjing: Southeast University, 2016.
    [10] 张春林, 张希农. 菱形微位移压电作动器的输入输出线性建模[J]. 西安交通大学学报, 2014, 48(5): 102- 106.ZHANG CH L, ZHANG X N. Linear modeling for input-output relations of a Rhombic micro-displacement piezoelectric actuator[J]. Journal of Xi’an jiaotong University, 2014, 48(5): 102- 106.
    [11] 肖霄, 李杨民. 电磁驱动微位移模块的研制[J]. 机电一体化, 2016, 21(3): 1252- 1261.XIAO X, LI Y M. Development of an electromagnetic actuated micro displacement module[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1252- 1261.
    [12] 胡俊峰, 张宪民. 3自由度精密定位平台的运动特性和优化设计[J]. 光学精密工程, 2012, 20(12): 2686- 2695.HU J F, ZHANG X M. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Optics and Precision Engineering, 2012, 20(12): 2686- 2695.
    [13] 马立, 谢炜, 刘波, 等. 柔性铰链微定位平台的设计[J]. 光学精密工程, 2014, 22(2):338- 345.MA L, XIE W, LIU B, et al. Design of micro-positioning stage with flexure hings[J]. Optics and Precision Engineering, 2014, 22(2); 338- 345.
    [14] 杜志远, 闫鹏. 基于桥式放大机构的柔顺性微定位平台的研究[J]. 机器人, 2016, 38(2): 180- 191.DU ZH Y, YAN P. Research on compliant micro positioning platform based on bridge compliant amplification mechanism[J]. Robot, 2016, 38(2): 180- 191.
    [15] 于志亮, 刘杨, 王岩, 等. 基于改进PI模型的压电陶瓷迟滞特性补偿控制[J]. 仪器仪表学报, 2017, 38(1): 129- 135.YU ZH L, LIU Y, WANG Y, et al. Hysteresis compensation and control of piezoelectric actuator based on an improved PI model [J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 129- 135.
    [16] 崔玉国, 刘尔春, 杨依领, 等. 基于改进PID的压电微定位平台反馈控制[J]. 仪器仪表学报, 2018, 39(6): 216- 218.CUI Y G, LIU ER CH, Y Y L, et al. Feedback control of piezoelectric micro-positioning platform based on improved PID[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 216- 218.
    [17] 段源鸿, 韩森, 唐寿鸿, 等. 一种用于相移干涉仪的高压放大电路[J]. 电子测量技术, 2017, 40(8): 217- 219.DUAN Y H, HAN S, T SH H,et al. A high voltage amplifier circuit for phase shift interferometer[J]. Electronic Measurement Technology, 2017, 40(8): 217- 219.
    [18] 许素安, 谢敏, 孙坚, 等. 基于压电陶瓷光电相移驱动的大行程纳米定位系统[J]. 光学精密工程, 2014, 22(10): 2776- 2778.XU S AN, XIE M, SUN J, et al. Long range nano-positioning system based on optoelectronic phase-shift for piezoelectric actuator[J]. Optics and Precision Engineering, 2014, 22(10): 2776- 2778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700