用户名: 密码: 验证码:
蓝细菌光驱固碳细胞工厂的合成生物学开发策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthetic biology strategies to develop efficient cyanobacterial photosynthetic cell factory
  • 作者:张杉杉 ; 栾国栋 ; 吕雪峰
  • 英文作者:ZHANG Shan-Shan;LUAN Guo-Dong;LV Xue-Feng;Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences;
  • 关键词:蓝细菌 ; 光合作用 ; 固碳 ; 光合生物制造 ; 细胞工厂 ; 合成生物学
  • 英文关键词:cyanobacteria;;photosynthesis;;carbon fixation;;photosynthetic biomanufacturing;;cell factory;;synthetic biology
  • 中文刊名:SMKX
  • 英文刊名:Chinese Bulletin of Life Sciences
  • 机构:中国科学院青岛生物能源与过程研究所中国科学院生物燃料重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:生命科学
  • 年:2019
  • 期:v.31;No.241
  • 基金:国家自然科学基金项目(31770092,31600034);; 山东省重大基础研究项目;; 青岛创业创新领军人才计划
  • 语种:中文;
  • 页:SMKX201904008
  • 页数:13
  • CN:04
  • ISSN:31-1600/Q
  • 分类号:54-66
摘要
光合生物制造技术是指以光合自养生物为底盘,通过光合固碳过程,将太阳能和二氧化碳直接转化为生物燃料和生物基化学品的全新生物制造模式。发展光合生物制造技术可以同时实现固碳减排和清洁生产。蓝细菌是极具潜力的微生物光合底盘,也为光合生物制造技术开发高效的光驱固碳细胞工厂提供了重要平台。着眼于未来的规模化应用需求,蓝细菌光驱固碳细胞工厂需要在物质能量转化效率、工业过程中的生长和生产稳定性以及与工程过程的适配性这三方面进一步提升。现从光能的捕集和利用、碳源的固定和转化、逆境胁迫的适应以及工程过程的适配这四个角度,介绍了如何应用合成生物学工具和策略,人工设计、开发进而优化蓝细菌光驱固碳细胞工厂,以满足光合生物制造技术大规模应用的需要;最后,总结、介绍了本领域的最新研究进展,并对未来发展方向进行了展望。
        Photosynthetic bio-manufacturing technology refers to a new bio-manufacturing model that uses photosynthetic autotrophic organisms as chassis to directly convert solar energy and carbon dioxide into biofuels and bio-based chemicals through photosynthetic carbon fixation. The development of photosynthetic biomanufacturing technology can simultaneously achieve the effects of carbon sequestration and clean production.Cyanobacteria are highly promising microbial photosynthetic chassis and important platforms for the development of efficient photosynthetic cell factories. For scaling up the photosynthetic bio-manufacturing technology, the cyanobacteria photosynthetic cell factories need to be further improved in terms of material and energy conversion efficiency, growth and production stability in industrial processes, and adaptability to engineering processes. To achieve the above objectives, efforts should be made to optimize the cyanobacteria chassis characteristics of capture and utilization of light energy, fixation and transformation of carbon sources, adaptation of stress and engineering processes. This review summarized the recent progress on application of synthetic biology tools and strategies for artificial design and development of cyanobacteria cell factories to meet the requirements of up-scaled photosynthetic biomanufacturing. The future development directions would also be prospected.
引文
[1]Keasling JD,Chou H.Metabolic engineering delivers next-generation biofuels.Nat Biotechnol,2008,26:298-9
    [2]Zhang Y,Zhu Y,Zhu Y,et al.The importance of engineering physiological functionality into microbes.Trends Biotechnol,2009,27:664-72
    [3]Lu X.A perspective:photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria.Biotechnol Adv,2010,28:742-6
    [4]Woo HM.Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms.Curr Opin Biotechnol,2017,45:1-7
    [5]Melis A.Solar energy conversion efficiencies in photosynthesis:minimizing the chlorophyll antennae to maximize efficiency.Plant Sci,2009,177:272-80
    [6]Oliver JW,Atsumi S.Metabolic design for cyanobacterial chemical synthesis.Photosynth Res,2014,120:249-61
    [7]Gao ZX,Zhao H,Li ZM,et al.Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria.Energy Environ Sci,2012,5:9857-65
    [8]Gao X,Gao F,Liu D,et al.Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2.Energy Environ Sci,2016,9:1400-11
    [9]Blankenship RE,Tiede DM,Barber J,et al.Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement.Science,2011,332:805-9
    [10]Walter JM,Greenfield D,Liphardt J.Potential of lightharvesting proton pumps for bioenergy applications.Curr Opin Biotechnol,2010,21:265-70
    [11]Chen Q,van der Steen JB,Dekker HL,et al.Expression of holo-proteorhodopsin in Synechocystis sp.PCC 6803.Metab Eng,2016,35:83-94
    [12]Pettai H,Oja V,Freiberg A,et al.Photosynthetic activity of far-red light in green plants.Biochim Biophys Acta,2005,1708:311-21
    [13]Chen M,Schliep M,Willows RD,et al.A red-shifted chlorophyll.Science,2010,329:1318-9
    [14]Gan F,Zhang S,Rockwell NC,et al.Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.Science,2014,345:1312-7
    [15]Nurnberg DJ,Morton J,Santabarbara S,et al.Photochemistry beyond the red limit in chlorophyll f-containing photosystems.Science,2018,360:1210-3
    [16]Joseph A,Aikawa S,Sasaki K,et al.Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp.PCC 6803.Amb Express,2014,4:17
    [17]Kirst H,Formighieri C,Melis A.Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size.Biochim Biophys Acta,2014,1837:1653-64
    [18]Hasunuma T,Matsuda M,Senga Y,et al.Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp.PCC6803 by enhancement of alternative electron flow.Biotechnol Biofuels,2014,7:493
    [19]Price GD.Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism.Photosynth Res,2011,109:47-57
    [20]Kamennaya NA,Ahn S,Park H,et al.Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp.PCC6803 enhances biomass production.Metab Eng,2015,29:76-85
    [21]Liang F,Lindblad P.Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803.Metab Eng,2016,38:56-64
    [22]Liang FY,Englund E,Lindberg P,et al.Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio.Metab Eng,2018,46:51-59
    [23]De Porcellinis AJ,Norgaard H,Brey LMF,et al.Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp.PCC 7002.Metab Eng,2018,47:170-183
    [24]Durall C,Rukminasari N,Lindblad P.Enhanced growth at low light intensity in the cyanobacterium Synechocystis PCC 6803 by overexpressing phosphoenolpyruvate carboxylase.Algal Res,2016,16:275-81
    [25]Hu G,Zhou J,Chen X,et al.Engineering synergetic CO2-fixing pathways for malate production.Metab Eng,2018,47:496-504
    [26]Schwander T,von Borzyskowski LS,Burgener S,et al.Asynthetic pathway for the fixation of carbon dioxide in vitro.Science,2016,354:900-4
    [27]Gong FY,Cai Z,Li Y.Synthetic biology for CO2 fixation.Sci China Life Sci,2016,59:1106-14
    [28]Bar-Even A,Noor E,Lewis NE,et al.Design and analysis of synthetic carbon fixation pathways.Proc Natl Acad Sci USA,2010,107:8889-94
    [29]Berg IA,Kockelkorn D,Buckel W,et al.A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea.Science,2007,318:1782-6
    [30]Bonacci W,Teng PK,Afonso B,et al.Modularity of a carbon-fixing protein organelle.Proc Natl Acad Sci USA,2012,109:478-83
    [31]Bogorad IW,Lin TS,Liao JC.Synthetic non-oxidative glycolysis enables complete carbon conservation.Nature,2013,502:693-7
    [32]Yu H,Li X,Duchoud F,et al.Augmenting the CalvinBenson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway.Nat Commun,2018,9:2008
    [33]McEwen JT,Machado IM,Connor MR,et al.Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions.Appl Environ Microbiol,2013,79:1668-75
    [34]Mc Ewen JT,Kanno M,Atsumi S.2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption.Metab Eng,2016,36:28-36
    [35]Kanno M,Carroll AL,Atsumi S.Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.Nat Commun,2017,8:14724
    [36]Kanno M,Atsumi S.Engineering an obligate photoautotrophic cyanobacterium to utilize glycerol for growth and chemical production.ACS Synth Biol,2017,6:69-75
    [37]Nozzi N,Oliver J,Atsumi S.Cyanobacteria as a platform for biofuel production.Front Bioeng Biotechnol,2013,1:7
    [38]Qiao C,Duan Y,Zhang M,et al.Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942.Appl Environ Microbiol,2018,84:e02023-17
    [39]David C,Schmid A,Adrian L,et al.Production of1,2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over.Biotechnol Bioeng,2018,115:300-11
    [40]Maza-Marquez P,Gonzalez-Martinez A,Martinez-Toledo MV,et al.Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor.Environ Sci Pollut Res Int,2017,24:527-38
    [41]Jiang LQ,Pei HY,Hu WR,et al.The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition.Bioresour Technol,2015,180:304-10
    [42]Iijima H,Nakaya Y,Kuwahara A,et al.Seawater cultivation of freshwater cyanobacterium Synechocystis sp.PCC 6803 drastically alters amino acid composition and glycogen metabolism.Front Microbiol,2015,6:326
    [43]Pade N,Erdmann S,Enke H,et al.Insights into isoprene production using the cyanobacterium Synechocystis sp.PCC 6803.Biotechnol Biofuels,2016,9:89
    [44]Post FJ,Borowitzka LJ,Borowitzka MA,et al.The protozoa of a western Australian hypersaline lagoon.Hydrobiologia,1983,105:95-113
    [45]Zhu Z,Luan G,Tan X,et al.Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.Biotechnol Biofuels,2017,10:93
    [46]Touloupakis E,Cicchi B,Benavides AMS,et al.Effect of high pH on growth of Synechocystis sp.PCC 6803 cultures and their contamination by golden algae(Poterioochromonas sp.).Appl Microbiol Biotechnol,2016,100:1333-41
    [47]Luan G,Lu X.Tailoring cyanobacterial cell factory for improved industrial properties.Biotechnol Adv,2018,36:430-42
    [48]Gao X,Sun T,Pei G,et al.Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.Appl Microbiol Biotechnol,2016,100:3401-13
    [49]Dunlop MJ,Dossani ZY,Szmidt HL,et al.Engineering microbial biofuel tolerance and export using efflux pumps.Mol Syst Biol,2011,7:487
    [50]Luan G,Dong H,Zhang T,et al.Engineering cellular robustness of microbes by introducing the GroESLchaperonins from extremophilic bacteria.J Biotechnol,2014,178:38-40
    [51]Pan J,Wang J,Zhou ZF,et al.IrrE,a global regulator of extreme radiation resistance in Deinococcus radiodurans,enhances salt tolerance in Escherichia coli and Brassica napus.PLoS One,2009,4:e4422
    [52]Brock TD.Halophilic blue-green algae.Arch Microbiol,1976,107:109-11
    [53]Laloknam S,Tanaka K,Buaboocha T,et al.Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity.Appl Environ Microbiol,2006,72:6018-26
    [54]Wutipraditkul N,Waditee R,Incharoensakdi A,et al.Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH.Appl Environ Microbiol,2005,71:4176-84
    [55]Waditee R,Hibino T,Nakamura T,et al.Overexpression of a Na+/H+antiporter confers salt tolerance on a freshwater cyanobacterium,making it capable of growth in sea water.Proc Natl Acad Sci USA,2002,99:4109-14
    [56]Singh M,Sharma NK,Prasad SB,et al.The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity,but became halophilic.Microbiology,2013,159:641-8
    [57]Waditee-Sirisattha R,Singh M,Kageyama H,et al.Anabaena sp.PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt.Arch Microbiol,2012,194:909-14
    [58]Waditee-Sirisattha R,Kageyama H,Tanaka Y,et al.Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance.Arch Microbiol,2017,199:29-35
    [59]Zhu L,Zhu Y,Zhang Y,et al.Engineering the robustness of industrial microbes through synthetic biology.Trends Microbiol,2012,20:94-101
    [60]Bhagwat AA,Apte SK.Comparative analysis of proteins induced by heat shock,salinity,and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp.strain L-31.J Bacteriol,1989,171:5187-9
    [61]Chapman E,Farr GW,Usaite R,et al.Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL.Proc Natl Acad Sci USA,2006,103:15800-5
    [62]Tomas CA,Welker NE,Papoutsakis ET.Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance,prolonged metabolism,and changes in the cell's transcriptional program.Appl Environ Microbiol,2003,69:4951-65
    [63]Zingaro KA,Papoutsakis ET.GroESL overexpression imparts Escherichia coli tolerance to i-,n-,and 2-butanol,1,2,4-butanetriol and ethanol with complex and unpredictable patterns.Metab Eng,2013,15:196-205
    [64]Chaurasia AK,Apte SK.Overexpression of the groESLoperon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp.strain PCC7120.Appl Environ Microbiol,2009,75:6008-12
    [65]Gonzalez-Esquer CR,Vermaas WFJ.ClpB1 overproduction in Synechocystis sp.strain PCC 6803 increases tolerance to rapid heat shock.Appl Environ Microbiol,2013,79:6220-7
    [66]Su HY,Chou HH,Chow TJ,et al.Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock.Bioresour Technol,2017,244:1294-303
    [67]Lin Z,Zhang Y,Wang J.Engineering of transcriptional regulators enhances microbial stress tolerance.Biotechnol Adv,2013,31:986-91
    [68]Zhang HF,Chong HQ,Ching CB,et al.Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance.Appl Microbiol Biotechnol,2012,94:1107-17
    [69]Alper H,Moxley J,Nevoigt E,et al.Engineering yeast transcription machinery for improved ethanol tolerance and production.Science,2006,314:1565-8
    [70]Alper H,Stephanopoulos G.Global transcription machinery engineering:a new approach for improving cellular phenotype.Metab Eng,2007,9:258-67
    [71]Nikkinen HL,Hakkila K,Gunnelius L,et al.The SigBsigma factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp.PCC 6803.Plant Physiol,2012,158:514-23
    [72]Kaczmarzyk D,Anfelt J,Sarnegrim A,et al.Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp PCC6803.J Biotechnol,2014,182:54-60
    [73]Narayan OP,Kumari N,Bhargava P,et al.A single gene all3940(Dps)overexpression in Anabaena sp.PCC 7120confers multiple abiotic stress tolerance via proteomic alterations.Funct Integr Genomics,2016,16:67-78
    [74]Wan C,Alam MA,Zhao XQ,et al.Current progress and future prospect of microalgal biomass harvest using various flocculation technologies.Bioresour Technol,2015,184:251-7
    [75]Alam MA,Wan C,Guo SL,et al.Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.J Biosci Bioeng,2014,118:29-33
    [76]Guo SL,Zhao XQ,Tang Y,et al.Establishment of an efficient genetic transformation system in Scenedesmus obliquus.J Biotechnol,2013,163:61-8
    [77]Li Q,Zhao XQ,Chang AK,et al.Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production.Metab Eng,2012,14:1-8
    [78]Jiang XR,Wang H,Shen R,et al.Engineering the bacterial shapes for enhanced inclusion bodies accumulation.Metab Eng,2015,29:227-37
    [79]Jiang XR,Chen GQ.Morphology engineering of bacteria for bio-production.Biotechnol Adv,2016,34:435-40
    [80]Wang Y,Wu H,Jiang X,et al.Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrateco-4-hydroxybutyrate)in larger cellular space.Metab Eng,2014,25:183-93
    [81]Erickson HP,Anderson DE,Osawa M.FtsZ in bacterial cytokinesis:cytoskeleton and force generator all in one.Microbiol Mol Biol Rev,2010,74:504-28
    [82]Jordan A,Chandler J,MacCready JS,et al.Engineering cyanobacterial cell corphology for enhanced recovery and processing of biomass.Appl Environ Microbiol,2017,83:e00053-17
    [83]Daniel RA,Errington J.Control of cell morphogenesis in bacteria:two distinct ways to make a rod-shaped cell.Cell,2003,113:767-76
    [84]Rueff AS,Chastanet A,Dominguez-Escobar J,et al.An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis.Mol Microbiol,2014,91:348-62
    [85]Hu B,Yang GH,Zhao WX,et al.MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp.PCC 7120.Mol Microbiol,2007,63:1640-52
    [86]Singh SP,Montgomery BL.Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon.Front Microbiol,2015,6:1215
    [87]Gonzalez-Fernandez C,Ballesteros M.Microalgae autoflocculation:an alternative to high-energy consuming harvesting methods.J Appl Phycol,2013,25:991-9
    [88]Fedeson DT,Ducat DC.Cyanobacterial surface display system mediates engineered interspecies and abiotic binding.ACS Synth Biol,2017,6:367-74
    [89]Lee SJ,Yoon BD,Oh HM.Rapid method for the determination of lipid from the green alga Botryococcus braunii.Biotechnol Tech,1998,12:553-6
    [90]Ohshima T,Sato M.Bacterial sterilization and intracellular protein release by a pulsed electric field.Adv Biochem Eng Biotechnol,2004,90:113-33
    [91]Kurihara T,Esaki N.Bacterial hydrolytic dehalogenases and related enzymes:occurrences,reaction mechanisms,and applications.Chem Rec,2008,8:67-74
    [92]Liu X,Curtiss R 3rd.Nickel-inducible lysis system in Synechocystis sp.PCC 6803.Proc Natl Acad Sci USA,2009,106:21550-4
    [93]Liu X,Fallon S,Sheng J,et al.CO2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass.Proc Natl Acad Sci USA,2011,108:6905-8
    [94]Liu XY,Curtiss R.Thermorecovery of cyanobacterial fatty acids at elevated temperatures.J Biotechnol,2012,161:445-9
    [95]Waterbury JB,Watson SW,Guillard RRL,et al.Widespread occurrence of a unicellular,marine,planktonic,cyanobacterium.Nature,1979,277:293-4
    [96]Hohmann-Marriott MF,Blankenship RE.Evolution of photosynthesis.Annu Rev Plant Biol,2011,62:515-48
    [97]Li S,Sun T,Xu C,et al.Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.Metab Eng,2018,48:163-74
    [98]Zhou J,Zhang H,Meng H,et al.Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria.Sci Rep,2014,4:4500
    [99]Niu TC,Lin GM,Xie LR,et al.Expanding the potential of CRISPR-Cpf1 based genome editing technology in the cyanobacterium Anabaena PCC 7120.ACS Synth Biol,2018,8:170-80
    [100]Sun T,Li S,Song X,et al.Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp.PCC 6803.Biotechnol Biofuels,2018,11:26
    [101]Sun T,Li SB,Song XY,et al.Toolboxes for cyanobacteria:recent advances and future direction.Biotechnol Adv,2018,36:1293-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700