用户名: 密码: 验证码:
同种异体脂肪干细胞移植促进大鼠骨骼肌功能的恢复
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transplantation of allogeneic adipose-derived mesenchymal stem cells promotes the recovery of skeletal muscle function
  • 作者:何理 ; 郑小莉
  • 英文作者:He Li;Zheng Xiaoli;School of Basic Medical Sciences, Southwest Medical University;Jintang Hospital, West China Hospital of Sichuan University;
  • 关键词:急性骨骼肌损伤 ; 脂肪间充质干细胞 ; 细胞移植 ; 肌纤维再生 ; 腓肠肌 ; 同种异体移植 ; 骨骼肌细胞 ; 成肌细胞
  • 英文关键词:acute skeletal muscle injury;;adipose-derived mesenchymal stem cells;;cell transplantation;;muscle fiber regeneration;;gastrocnemius;;allogeneic transplantation;;skeletal muscle cells;;myoblasts
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:西南医科大学基础医学院;四川大学华西医院金堂医院;
  • 出版日期:2019-03-25
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.874
  • 语种:中文;
  • 页:XDKF201917021
  • 页数:7
  • CN:17
  • ISSN:21-1581/R
  • 分类号:121-127
摘要
背景:超过骨骼肌自我再生能力的广泛损伤可导致不可逆的纤维化、瘢痕形成和功能丧失。以往研究证实,脂肪来源干细胞可用于各种肌组织的再生,其对骨骼肌急性损伤后功能恢复的影响鲜有报道。目的:观察同种异体脂肪干细胞移植对骨骼肌急性损伤大鼠骨骼肌再生与功能恢复的作用。方法:从10只SD大鼠皮下脂肪组织中分离脂肪间充质干细胞,进行流式细胞术鉴定和多向分化能力鉴定。将72只SD大鼠随机分为正常对照组、模型组、胶原蛋白组和脂肪间充质干细胞移植组,后3组建立腓肠肌急性钝挫伤模型,胶原蛋白组分5个注射点在腓肠肌肌腹注射共1 mL大鼠胶原蛋白Ⅰ,脂肪干细胞移植组分5个注射点在腓肠肌肌腹注射含1×10~6个脂肪干细胞的1mL大鼠胶原蛋白Ⅰ。移植后7,14,28d,苏木精-伊红染色观察腓肠肌结构并测量腓肠肌纤维横截面积;用张力传感器测量腓肠肌等长收缩肌力;称量腓肠肌湿质量并计算其与体质量比值;Western blot检测腓肠肌组织中Pax7、MyoG、MyoD的表达。结果与结论:①大鼠脂肪干细胞表达CD29和CD90,不表达CD31和CD34,具有成脂、成骨和成软骨分化能力;②在移植后28d,脂肪干细胞移植组大鼠腓肠肌损伤部位可观察到新生的骨骼肌纤维,4组大鼠腓肠肌损伤部位均未观察到明显的纤维增生;③在移植后28 d,脂肪干细胞组腓肠肌湿质量及其与体质量比值均高于模型组和胶原蛋白组(P<0.01),脂肪干细胞移植组腓肠肌中肌纤维横截面积大于模型组和胶原蛋白组(P <0.01);④移植后7,14,28 d,模型组、胶原蛋白组、脂肪干细胞移植组腓肠肌等长收缩肌力均低于正常对照组(P <0.01),移植后28 d,脂肪干细胞移植组腓肠肌等长收缩肌力高于模型组和胶原蛋白组(P <0.01);⑤移植后14 d,脂肪干细胞移植组腓肠肌组织中Pax7和MyoD的表达高于模型组和胶原蛋白组(P <0.05),移植后28 d,脂肪干细胞移植组腓肠肌组织中MyoD和MyoG的表达高于模型组和胶原蛋白组(P <0.05);⑥结果表明,脂肪干细胞移植到急性受损骨骼肌中能促进肌纤维的再生和功能恢复。
        BACKGROUND: An extensive damage beyond the ability of skeletal muscle to regenerate itself can lead to irreversible fibrosis, scarring and dysfunction. Previous studies have shown that adipose-derived mesenchymal stem cells can be used for the regeneration of various muscle tissues. The effect of stem cells on functional recovery after acute skeletal muscle injury has rarely been reported.OBJECTIVE: To study the effect of allogeneic adipose-derived mesenchymal stem cells transplantation on skeletal muscle regeneration and functional recovery in rats with acute skeletal muscle injury.METHODS: Adipose-derived mesenchymal stem cells were isolated from subcutaneous adipose tissues of 10 Sprague-Dawley rats and identified by flow cytometry for multidirectional differentiation. Seventy-two Sprague-Dawley rats were randomly divided into normal control group, model group, collagen group and adipose-derived mesenchymal stem cells transplantation group. A rat model of acute blunt injury of the gastrocnemius muscle was established in the latter three groups. Then, 1 mL of type collagen Ⅰ alone or containing 1×10~6 adipose-derived mesenchymal stem cells was injected into the gastrocnemius muscle in the collagen and adipose-derived mesenchymal stem cells transplantation groups, respectively, and there were five injection sites per rat. Hematoxylin-eosin staining was used to observe the structure of gastrocnemius muscle and measure the cross-sectional area of gastrocnemius muscle fiber 7, 14 and 28 days after transplantation. The isometric contraction force of gastrocnemius muscle was measured. The wet weight of gastrocnemius muscle was measured and the ratio of wet weight to body weight was calculated. The expressions of Pax7, MyoG and MyoD in gastrocnemius muscle tissue were detected by western blot assay.RESULTS AND CONCLUSION: Isolated rat adipose-derived mesenchymal stem cells were positive for CD29 and CD90, and negative for CD31 and CD34. These cells had the ability of adipogenesis, osteogenesis and chondrogenesis. Neonatal skeletal muscle fibers were observed in the injured site of the gastrocnemius muscles at 28 days after adipose-derived mesenchymal stem cells transplantation, and no fibrogenesis was observed in the gastrocnemius muscles of the four groups. At 28 days after transplantation, the wet weight of gastrocnemius muscle and its ratio to body weight in the adipose-derived mesenchymal stem cells transplantation group were higher than those in the model group and collagen group(P < 0.01), and the cross-sectional area of muscle fibers in the gastrocnemius muscle in adipose-derived mesenchymal stem cells transplantation group was larger than that in the model group and collagen group(P < 0.05). At 7, 14, and 28 days after transplantation, the isometric contractile muscle strength of the gastrocnemius muscle in the model group, collagen group and adipose-derived mesenchymal stem cells transplantation group were lower than that in the normal control group(P < 0.01). At 28 days after transplantation, the isometric contractile muscle strength of the gastrocnemius muscle in the adipose-derived mesenchymal stem cells transplantation group was higher than that in the model group and collagen group(P < 0.01). The expressions of Pax7 and MyoD in the gastrocnemius muscle of adipose-derived mesenchymal stem cells transplantation group were higher than those of the model group and collagen group at 14 days after transplantation(P < 0.05). The expressions of MyoD and MyoG in the gastrocnemius muscle of adipose-derived mesenchymal stem cells transplantation group was higher than that of model group and collagen group at 28 days after transplantation(P < 0.05). To conclude, adipose-derived mesenchymal stem cells transplantation for acute skeletal muscle injury can promote the regeneration of muscle fibers and functional recovery.
引文
[1]Klimczak A,Kozlowska U,Kurpisz M.Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies.Arch Immunol Ther Exp(Warsz).2018;66(5):341-354.
    [2]Costamagna D,Berardi E,Ceccarelli G,et al.Adult Stem Cells and Skeletal Muscle Regeneration.Curr Gene Ther.2015;15(4):348-363.
    [3]Dumont NA,Bentzinger CF,Sincennes MC,et al.Satellite Cells and Skeletal Muscle Regeneration.Compr Physiol.2015;5(3):1027-1059.
    [4]Marino S,Di Foggia V.Invited Review:Polycomb group genes in the regeneration of the healthy and pathological skeletal muscle.Neuropathol Appl Neurobiol.2016;42(5):407-422.
    [5]Chazaud B.Inflammation during skeletal muscle regeneration and tissue remodeling:application to exercise-induced muscle damage management.Immunol Cell Biol.2016;94(2):140-145.
    [6]Kozakowska M,Pietraszek-Gremplewicz K,Jozkowicz A,et al.The role of oxidative stress in skeletal muscle injury and regeneration:focus on antioxidant enzymes.J Muscle Res Cell Motil.2015;36(6):377-393.
    [7]Bossola M,Marzetti E,Rosa F,et al.Skeletal muscle regeneration in cancer cachexia.Clin Exp Pharmacol Physiol.2016;43(5):522-527.
    [8]Tu MK,Levin JB,Hamilton AM,et al.Calcium signaling in skeletal muscle development,maintenance and regeneration.Cell Calcium.2016;59(2-3):91-97.
    [9]Almada AE,Wagers AJ.Molecular circuitry of stem cell fate in skeletal muscle regeneration,ageing and disease.Nat Rev Mol Cell Biol.2016;17(5):267-279.
    [10]Joanisse S,Nederveen JP,Snijders T,et al.Skeletal Muscle Regeneration,Repair and Remodelling in Aging:The Importance of Muscle Stem Cells and Vascularization.Gerontology.2017;63(1):91-100.
    [11]Cruz-Martinez P,Pastor D,Estirado A,et al.Stem cell injection in the hindlimb skeletal muscle enhances neurorepair in mice with spinal cord injury.Regen Med.2014;9(5):579-591.
    [12]Rahman MM,Ghosh M,Subramani J,et al.CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury.Stem Cells.2014;32(6):1564-1577.
    [13]Park JK,Ki MR,Lee EM,et al.Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-βand fibrosis in skeletal muscle injury.Cell Transplant.2012;21(11):2407-2424.
    [14]Pe?anha R,Bagno LL,Ribeiro MB,et al.Adipose-derived stem-cell treatment of skeletal muscle injury.J Bone Joint Surg Am.2012;94(7):609-617.
    [15]王维,黄玉成,陈燕辉.脂肪间充质干细胞对硬皮病小鼠皮损组织成纤维细胞增殖的影响及其机制[J].中国组织工程研究,2018,22(33):5249-5254.
    [16]张传辉,李建军,杨军.调控脂肪间充质干细胞成软骨分化基因Sox-9和低氧诱导因子1α的表达[J].中国组织工程研究,2016,20(45):6766-6773.
    [17]杨记农,姜亦瑶,袁超,等.不同氧体积分数下脂肪间充质干细胞和脐带间充质干细胞的旁分泌能力[J].中国组织工程研究,2018,22(21):3322-3327.
    [18]罗翱,唐成林,黄思琴,等.骨骼肌急性钝挫伤修复过程中自噬相关因子的表达变化[J].中国应用生理学杂志,2018,34(2):97-101,114.
    [19]池凯,毋磊,陈龙金,等.人脱细胞真皮复合骨髓间充质干细胞构建组织工程皮肤修复皮肤创面缺损[J].中国组织工程研究,2018,22(26):4179-4183.
    [20]林小娟,唐毅,陈建豪,等.脂肪干细胞移植对大鼠脑缺血后微血管生成及MT1-MMP表达的影响[J].中国实用神经疾病杂志,2018,21(14):1514-1520.
    [21]王杨文洁,刘肇杰,安惠暄,等.4周有氧运动介导apelin对小鼠骨骼肌UCP3表达的影响[J].中国运动医学杂志,2018,37(9):772-777.
    [22]张昕,李志清.跑台运动训练对大鼠腓肠肌结构及最大收缩张力的影响[J].西北大学学报(自然科学版),2013,43(1):70-74.
    [23]Winkler T,von Roth P,Matziolis G,et al.Dose-response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats.Tissue Eng Part A.2009;15(3):487-492.
    [24]Ren Y,Wu H,Ma Y,et al.Potential of adipose-derived mesenchymal stem cells and skeletal muscle-derived satellite cells for somatic cell nuclear transfer mediated transgenesis in Arbas Cashmere goats.PLoSOne.2014;9(4):e93583.
    [25]Lee EM,Kim AY,Lee EJ,et al.Therapeutic effects of mouse adipose-derived stem cells and losartan in the skeletal muscle of injured mdx mice.Cell Transplant.2015;24(5):939-953.
    [26]Rybalko V,Hsieh PL,Ricles LM,et al.Therapeutic potential of adipose-derived stem cells and macrophages for ischemic skeletal muscle repair.Regen Med.2017;12(2):153-167.
    [27]Pinheiro CH,de Queiroz JC,Guimar?es-Ferreira L,et al.Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle.Stem Cell Rev.2012;8(2):363-374.
    [28]Mizuno H.The potential for treatment of skeletal muscle disorders with adipose-derived stem cells.Curr Stem Cell Res Ther.2010;5(2):133-136.
    [29]Gorecka A,Salemi S,Haralampieva D,et al.Autologous transplantation of adipose-derived stem cells improves functional recovery of skeletal muscle without direct participation in new myofiber formation.Stem Cell Res Ther.2018;9(1):195.
    [30]Crist C.Emerging new tools to study and treat muscle pathologies:genetics and molecular mechanisms underlying skeletal muscle development,regeneration,and disease.J Pathol.2017;241(2):264-272.
    [31]Dueweke JJ,Awan TM,Mendias CL.Regeneration of Skeletal Muscle After Eccentric Injury.J Sport Rehabil.2017;26(2):171-179.
    [32]Delaney K,Kasprzycka P,Ciemerych MA,et al.The role of TGF-β1during skeletal muscle regeneration.Cell Biol Int.2017;41(7):706-715.
    [33]Gon?alves TJM,Armand AS.Non-coding RNAs in skeletal muscle regeneration.Noncoding RNA Res.2017;2(1):56-67.
    [34]Ultimo S,Zauli G,Martelli AM,et al.Influence of physical exercise on micro RNAs in skeletal muscle regeneration,aging and diseases.Oncotarget.2018;9(24):17220-17237.
    [35]Baghdadi MB,Tajbakhsh S.Regulation and phylogeny of skeletal muscle regeneration.Dev Biol.2018;433(2):200-209.
    [36]Saba JD,de la Garza-Rodea AS.S1P lyase in skeletal muscle regeneration and satellite cell activation:exposing the hidden lyase.Biochim Biophys Acta.2013;1831(1):167-175.
    [37]Ryall JG.Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.FEBS J.2013;280(17):4004-4013.
    [38]Juban G,Chazaud B.Metabolic regulation of macrophages during tissue repair:insights from skeletal muscle regeneration.FEBS Lett.2017;591(19):3007-3021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700