用户名: 密码: 验证码:
Geochemical characteristics from tests of four modern planktonic foraminiferal species in the Indonesian Throughflow region and their implications
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical characteristics from tests of four modern planktonic foraminiferal species in the Indonesian Throughflow region and their implications
  • 作者:Peng ; Zhang ; Rina ; Zuraida ; Yair ; Rosenthal ; Ann ; Holbourn ; Wolfgang ; Kuhnt ; Jian ; Xu
  • 英文作者:Peng Zhang;Rina Zuraida;Yair Rosenthal;Ann Holbourn;Wolfgang Kuhnt;Jian Xu;Institute of Cenozoic Geology and Environment,State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University;Marine Geology Institute;Department of Marine and Coastal Sciences,Rutgers,The State University of New Jersey;Institute of Geosciences,Christian-Albrechts-University;
  • 英文关键词:Test geochemistry;;Multi-species;;Planktonic foraminifera;;Core-top sediments;;Indonesian Through?ow region
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:Institute of Cenozoic Geology and Environment,State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University;Marine Geology Institute;Department of Marine and Coastal Sciences,Rutgers,The State University of New Jersey;Institute of Geosciences,Christian-Albrechts-University;
  • 出版日期:2019-03-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:supported by the National Natural Science Foundation of China (Grant Nos. 41176044 and 41576045);; Shaanxi Provincial Technology Foundation for Selected Overseas Chinese Scholar (Grant No. Shaan Renshe [2015] No. 1190)
  • 语种:英文;
  • 页:GSFT201902014
  • 页数:12
  • CN:02
  • ISSN:11-5920/P
  • 分类号:150-161
摘要
Test geochemistry of planktonic foraminifera is an indispensable tool in reconstructing past ocean hydrological changes. It is essential to investigate region-specific implications of test geochemistry,although those established from other regions can be broadly applied. In this study, characteristics of6180 and Mg/Ca from tests of four planktonic foraminiferal species, Globigerinoides ruber sensu stricto(s.s.), Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neogloboquadrina dutertrei, from 60 coretop sediment samples retrieved from the Indonesian Throughflow(ITF) region were studied. These geochemical data were compared with modern hydrographic profiles in order to assess their relations and to investigate potential implications of test geochemical parameters in reconstructing past oceanographic change in the ITF region. Calcification depths of these four species were first estimated based on comparison between measured test δ180 and predicted calcite δ~(18)O that was calculated from modern temperature and salinity. The results indicate that G. ruber s.s. and G. sacculifer calcify within the mixedlayer at 0-50 m and 20-75 m, respectively, whereas P. obliquiloculata and N. dutertrei calcify within the thermocline at around 75 to 125 m. A combined study of excess Mg/Ca(difference between measured and predicted Mg/Ca) and salinity suggests that salinity exerts a negligible impact on test Mg/Ca of these foraminiferal species in the ITF region. Comparison of test Mg/Ca-derived temperatures with temperature profiles of the upper 200 m of the water column from the seas of the ITF region also indicate calcification depths of these species, which match well with the above estimations using test δ~(18)O. It further indicates that G. sacculifer may be more sensitive in reflecting changes in the depth of the mixedlayer, highlighting a potential use of Mg/Ca temperature difference between G. ruber s.s. and G. sacculifer in reconstructing the depth of the mixed-layer in the ITF region.
        Test geochemistry of planktonic foraminifera is an indispensable tool in reconstructing past ocean hydrological changes. It is essential to investigate region-specific implications of test geochemistry,although those established from other regions can be broadly applied. In this study, characteristics of6180 and Mg/Ca from tests of four planktonic foraminiferal species, Globigerinoides ruber sensu stricto(s.s.), Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neogloboquadrina dutertrei, from 60 coretop sediment samples retrieved from the Indonesian Throughflow(ITF) region were studied. These geochemical data were compared with modern hydrographic profiles in order to assess their relations and to investigate potential implications of test geochemical parameters in reconstructing past oceanographic change in the ITF region. Calcification depths of these four species were first estimated based on comparison between measured test δ180 and predicted calcite δ~(18)O that was calculated from modern temperature and salinity. The results indicate that G. ruber s.s. and G. sacculifer calcify within the mixedlayer at 0-50 m and 20-75 m, respectively, whereas P. obliquiloculata and N. dutertrei calcify within the thermocline at around 75 to 125 m. A combined study of excess Mg/Ca(difference between measured and predicted Mg/Ca) and salinity suggests that salinity exerts a negligible impact on test Mg/Ca of these foraminiferal species in the ITF region. Comparison of test Mg/Ca-derived temperatures with temperature profiles of the upper 200 m of the water column from the seas of the ITF region also indicate calcification depths of these species, which match well with the above estimations using test δ~(18)O. It further indicates that G. sacculifer may be more sensitive in reflecting changes in the depth of the mixedlayer, highlighting a potential use of Mg/Ca temperature difference between G. ruber s.s. and G. sacculifer in reconstructing the depth of the mixed-layer in the ITF region.
引文
Anand, P., Elderfield, H., Conte, M.H., 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18(2), 1050. https://doi.org/10.1029/2002PA000846.
    Antonov, J.I., Locarnini, R.A., Boyer, T.P., Mishonov, A.V., Garcia, H.E., 2006. World Ocean Atlas 2005, volume 2:salinity. In:Levitus, S.(Ed.), NOAA Atlas NESDIS 62.U.S. Government Printing Office, Washington, D.C., 182 pp. https://www.nodc.noaa.gov/cgi-bin/OC5/WOA05/woa05.pl
    Arbuszewski, J., Demenocal, P., Kaplan, A., Farmer, E.C., 2010. On the fidelity of shellderiveδ18O seawater estimates. Earth and Planetary Science Letters 300(3-4),185-196. https://doi.org/10.1016/j.epsl.2010.10.035.
    Bemis, B.E., Spero, H.J., Bijma, J., Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera:experimental results and revised paleotemperature equations. Paleoceanography 13(2), 150-160.
    Bouvier-Soumagnac, Y., Duplessy, J.C., 1985. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment:implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research 15,302-320. https://doi.org/10.2113/gsjfr.15.4.302.
    Cappelli, E.L.G., Holbourn, A., Kuhnt, W., Regenberg, M., 2016. Changes in Timor Strait hydrology and thermocline structure during the past 130 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 462, 112-124. https://doi.org/10.1016/j.palaeo.2016.09.010.
    Cheng, X., Huang, B., Jian, Z., Zhao, Q., Tian, J., Li, J., 2005. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea:a present-LGM comparison. Marine Micropaleontology 54(1-2), 125-139.
    Conroy, J.L., Cobb, K.M., Lynch-Stieglitz, J., Polissar, P.J., 2014. Constraints on the salinity-oxygen isotope relationship in the central tropical Pacific Ocean. Marine Chemistry 161, 26-33. https://doi.org/10.1016/j.marchem.2014.02.001.
    Dang, H., Jian, Z., Bassinot, F., Qiao, P., Cheng, X., 2012. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool. Geophysical Research Letters 39(1), L01701.
    Ding, X., Bassinot, F., Guichard, F., Li, Q.Y., Fang, N.Q., Labeyrie, L., Xin, R.C.,Adisaputra, M.K., Hardjawidjaksana, K., 2006. Distribution and ecology of planktonic foraminifera from the seas around the Indonesian Archipelago.Marine Micropaleontology 58(2), 114-134.
    Duenas-Bohorquez, A., Rocha, R.E.D., Kuroyanagi, A., Bijma, J., Reichart, G.J., 2009.Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera. Marine Micropaleontology 73,178-189. https://doi.org/10.1016/j.marmicro.2009.09.002.
    Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., Cao, L., Kaplan, A., Guilderson, T.P.,Fairbanks, T.W., Bloom, A.L., Grootes, P.M., Nadeau, M.J., 2005. Marine radiocarbon calibration curve spanning 10,000 to 50,000 years B.P. based on paired230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews24,1781-1796. https://doi.org/10.1016/j.quascirev.2005.04.007.
    Fan, W., Jian, Z., Bassinot, F., Chu, Z., 2013. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows:evidences from the Makassar Strait. Global and Planetary Change 111, 111-117. https://doi.org/10.1016/j.gloplacha.2013.08.017.
    Farmer, E.C., Kaplan, A., Menocal, P.B.D., Lynch-Stieglitz, J., 2007. Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens. Paleoceanography22, PA3205. https://doi.org/10.1029/2006PA001361.
    Ferguson, J.E., Henderson, G.M., Kucera, M., Rickaby,R.E.M., 2008. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth and Planetary Science Letters 265,153-166. https://doi.org/10.1016/j.epsl.2007.10.011.
    Ffield, A., Vranes, K., Gordon, A.L., Susanto, R.D., 2000. Temperature variability within the Makassar Strait. Geophysical Research Letters 27, 237-240.
    Fiedler, P.C., 2010. Comparison of objective descriptions of the thermocline.Limnology and Oceanography:Methods 8, 313-325. https://doi.org/10.4319/Iom.2010.8.313.
    Gordon, A.L., 2005. Oceanography of the Indonesian seas and their throughflow.Oceanography 18(4), 14-27.
    Gordon, A.L., Susanto, R.D., Vranes, K., 2003. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425(6960), 824-828.
    Hastings, D.W., Russell, A.D., Emerson, S.R., 1998. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy. Paleoceanography 13(2), PA161.
    Hertzberg, J.E., Schmidt, M.W., 2013. Refining Globigerinoides ruber Mg/Ca paleothermometry in the atlantic ocean. Earth and Planetary Science Letters 383,123-133.
    Honisch, B., Allen, K A., Lea, D.W., Spero, H.J., Eggins, S.M., Arbuszewski,J., deMenocal, P.,Rosenthal, Y., Russell, A.D., Elderfield, H., 2013. The influence of salinity on Mg/Ca in planktonic foraminifers-Evidence from cultured, core-top sediments and complementaryδ180. Geochimica et Cosmochimica Acta 121,196-213.
    Hut, G.,1987. Consultants'Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations. International Atomic Energy Agency(IAEA), Vienna.
    Katz, M.E., Cramer, B.S., Franzese, A., Honisch, B., Miller, K.G., Rosenthal, Y.,Wright, J.D., 2010. Traditional and emerging geochemical proxies in foraminifera. Journal of Foraminiferal Research 40(2), 165-192.
    Khider, D., Huerta, G., Jackson, C., Stott, L.D., Emile-Geay, J., 2015. A Bayesian, multivariate calibration for Globigerinoides ruber Mg/Ca. Geochemistry, Geophysics,Geosystems 16, 2916-2932. https://doi.org/10.1002/2015GC005844.
    Kisakurek, B., Eisenhauer, A., Bohm, F., Garbe-Schonberg, D., Erez, J., 2008. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber(white). Earth and Planetary Science Letters 273, 260-269.
    Linsley, B.K., Rosenthal, Y., Oppo, D.W., 2010. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool. Nature Geoscience 3(8),578-583.
    Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., 2006. World Ocean Atlas 2005, volume 1:temperature. In:Levitus, S.(Ed.), NOAA Atlas NESDIS 61. U.S. Government Printing Office, Washington, D. C., 182 pp. https://www.nodc.noaa.gov/cgi-bin/OC5/WOA05/woa05.p1
    Martinez, J.I., Taylor, L., Deckker, P.D., Barrows, T., 1998. Planktonic foraminifera from the eastern Indian Ocean:distribution and ecology in relation to the western pacific warm pool(WPWP). Marine Micropaleontology 34,121-151.
    Mathien-Blard, E., Bassinot, F., 2009. Salinity bias on the foraminifera Mg/Ca thermometry:correction procedure and implications for past ocean hydrographic reconstructions. Geochemistry, Geophysics, Geosystems 10, Q12011. https://doi.org/10.1029/2008GC002353.
    Miller, F.P., Vandome, A.F., McBrewster, J., 2011. Mount Tambora. Alphascript Publishing, Beau-Bassin. https://www.alphascript-publishing.com.
    Mohtadi, M.,Oppo, D.W., Liickge, A., DePol-Holz, R., Steinke, S.,Groeneveld, J.,Hemme, N., Hebbeln, D., 2011. Reconstructing the thermal structure of the upper ocean:insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean. Paleoceanography26,PA3219. https://doi.org/10.1029/2011PA002132.
    Mohtadi, M., Steinke, S., Groeneveld, J., Fink, H.G., Rixen, T., Hebbeln, D., Donner, B.,Herunadi, B., 2009. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java:a sediment trap study. Paleoceanography 24, PA1201. https://doi.org/10.1029/2008PA001636.
    Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., Yoshida, N., 2002.Salinity records for the 1997-98 El Nino from western pacific corals. Geophysical Research Letters 29(11), 1540. https://doi.org/10.1029/2001GL013521.
    Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., Wefer, G., 2003. Temperature:δ180 relationships of planktonic foraminifera collected from surface waters. Palaeogeography, Palaeoclimatology, Palaeoecology 202(1-2),143-152.
    Niirnberg, D., Bijma, J., Hemleben, C., 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta 60, 803-814.
    Oppo, D.W., Rosenthal, Y., Linsley, B.K., 2009. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460,1113-1116.
    Peterson, L.C., Prell, W.L., 1985. Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean:preservation patterns and carbonate loss above the lysocline. Marine Geology 64, 259-290.
    Regenberg, M., Regenberg, A., Garbe-Schonberg, D., Lea, D.W., 2014. Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcitesaturation state of bottom waters. Paleoceanography 29, 127-142. https://doi.org/10.1002/2013PA002492.
    Regoli, F., de Garidel-Thoron, T., Tachikawa, K., Jian, Z., Ye, L., Droxler, A.W., Lenoir, G.,Crucifix, M., Barbarin, N., Beaufort, L., 2015. Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods. Paleoceanography30, 439-455. https://doi.org/10.1002/2014PA002696.
    Rosenthal, Y., And,M.P.F., Sherrell, R.M., 1999. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Analytical Chemistry 71, 3248-3253.
    Rosenthal, Y., Boyle, E.A., Slowey, N., 1997. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank:prospects for thermocline paleoceanography.Geochimica et Cosmochimica Acta 61(17), 3633-3643. https://doi.org/10.1016/S0016-7037(97)00181-6.
    Rosenthal, Y., Lohmann, G.P., 2002. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry. Paleoceanography 17(3), 1044. https://doi.org/10.1029/2001PA000749.
    Rosenthal, Y., Perron-Cashman, S., Lear, C.H., Bard, E., Barker, S., Billups, K., Bryan, M.,Delaney, M.L.,deMenocal, P.B., Dwyer, G.S., Elderfield,H., German, C.R.,Greaves, M., Lea, D.W., Marchitto Jr., T.M., Pak, D.K., Paradis, G.L., Russell, A.D.,Schneider, R.R., Scheiderich, K., Stott, L., Kazuyo, T., Tappa, E., Thunell, R.,Wara, M., Weldeab, S., Wilson, P.A., 2004. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochemistry, Geophysics, Geosystems 5(4), Q04D09.https://doi.org/10.1029/2003GC00650.
    Schleicher, M., Grootes, P.M., Nadeau, M.J., Schoon, A., 1998. The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon 40,85-93.
    Schroder, J.F., Holbourn, A., Kuhnt, W., Kiissner, K., 2016. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr. Quaternary Science Reviews 154, 143-156. https://doi.org/10.1016/j.quascirev.2016.10.018.
    Shackleton, N., 1974. In:Labeyrie, L.(Ed.), Attainment of Isotopic Equilibrium Between Ocean Water and the Benthonic foraminifera genus Uvigerina:Isotopic Changes in the Ocean During the Last Glacia, in Les Methodes Quantitatives d'etude des Variations du Climat au Cours du Pleistocene. CNRS, Paris,pp. 203-209.
    Song, Q., Vecchi, G.A., Rosati, A.J., 2007. The role of the Indonesian throughflow in the indo-pacific climate variability in the GFDL coupled climate model. Journal of Climate 20, 2434-2451.
    Spero, H.J., Mielke, K.M., Kalve, E.M., Lea, D.W., Pak, D.K., 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography 18(1), 1022. https://doi.org/10.1029/2002PA000814.
    Sprintall, J., Wijffels, S.E., Molcard, R., Jaya, I., 2009. Direct estimates of the Indonesian throughflow entering the Indian Ocean:2004-2006. Journal of Geophysical Research 114(C7), C07001.
    Steinke, S., Chiu, H.Y., Yu, P.S., Shen, C.C., Lowemark, L., Mii, H.S., Chen, M.T., 2005.Mg/Ca ratios of two Globigerinoides ruber(white)morphotypes:implications for reconstructing past tropical/subtropical surface water conditions.Geochemistry, Geophysics, Geosystems 6, Q11005. https://doi.org/10.1029/2005GC000926.
    Stothers, R.B., 1984. The great Tambora eruption in 1815 and its aftermath. Science224,1191-1198.
    Susanto, R.D., Ffield, A., Gordon, A.L., Adi, T.R., 2012. Variability of Indonesian throughflow within Makassar Strait, 2004-2009. Journal of Geophysical Research 117(C9), C09013.
    Tian, J., Wang, P., Chen, R., Cheng, X., 2005. Quaternary upper ocean thermal gradient variations in the South China Sea:implications for east Asian monsoon climate. Paleoceanography 20, PA4007.
    Wang, L., 2000. Isotopic signals in two morphotypes of Globigerinoides ruber(white)from the South China Sea:implications for monsoonclimate change during the last glacial cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 161(3-4),381-394.
    Wei, J., Li, M.T., Malanotte-Rizzoli, P., Gordon, A.L., Wang, D.X., 2016. Opposite variability of Indonesian Throughflow and South China Sea Throughflow in the Sulawesi Sea. Journal of Physical Oceanography 46(10), 3165-3180. https://doi.org/10.1175/JPO-D-16-0132.1.
    Xu, J., 2014. Change of Indonesian throughflow outflow in response to East Asian monsoon and ENSO activities since the last glacial. Science China Earth Sciences57(4),791-801. https://doi.org/10.1007/s11430-014-4845-0.
    Xu J., Kuhnt, W., Holbourn, A., Regenberg, M., Andersen, N., 2010. Indo-pacific warm pool variability during the holocene and last glacial maximum. Paleoceanography 25, PA4230. https://doi.org/10.1029/2010PA001934.
    Zhang, P., Zuraida, R., Xu, J., Yang, C., 2016. Stable carbon and oxygen isotopes of four planktonic foraminiferal species from core-top sediments of the Indonesian Throughflow region and their significance. Acta Oceanologica Sinica 35(10),63-75. https://doi.org/10.1007/s13131-016-0890-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700