用户名: 密码: 验证码:
钢板-橡胶吸能圈的设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Method for Designing Steel Plate-rubber Energy Absorption Ring
  • 作者:王君杰 ; 涂凌峰 ; 殷永高 ; 郑伟峰
  • 英文作者:WANG Jun-jie;TU Ling-feng;YIN Yong-gao;ZHENG Wei-feng;School of Civil Engineering,Tongji University;Anhui Transportation Holding Group Co.,Ltd.;
  • 关键词:桥梁工程 ; 防撞设计方法 ; 统计分析 ; 钢板-橡胶圈 ; 性能参数
  • 英文关键词:bridge engineering;;anti-collision design method;;statistical analysis;;steel plate-rubber ring;;performance parameter
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:同济大学土木工程学院;安徽省交通控股集团有限公司;
  • 出版日期:2019-02-15
  • 出版单位:公路交通科技
  • 年:2019
  • 期:v.36;No.290
  • 基金:国家自然科学基金项目(51438010,51778498);; 上海市科学技术委员会科研计划项目(17DZ1204300)
  • 语种:中文;
  • 页:GLJK201902008
  • 页数:11
  • CN:02
  • ISSN:11-2279/U
  • 分类号:54-64
摘要
钢材和橡胶是两种常见的工程材料,两者组合起来具有较好的吸能和回弹性能。为了综合两种材料的优异性能用于工程设计,提出了一种由外钢板、橡胶圈和内钢板组成的钢板-橡胶吸能圈(简称钢板-橡胶圈)以用于防撞设计,并由此开展了基于钢板-橡胶圈的设计方法研究:使用有限元软件建立了外径为1 m的25个具有不同结构参数(钢板厚度、环壁厚)的钢板-橡胶圈有限元模型,其中钢板厚度选取的尺寸为0,5,10,15,20,25 mm,环壁厚选取的尺寸是0. 05,0. 1,0. 15,0. 2,0. 25 m。定义无量纲比值:钢板厚、环壁厚、圈的径向相对变形比。通过数值仿真和统计分析,建立了圈的性能参数(吸能量)与这3个无量纲比值的经验公式,并进行了相应的误差分析,确定了经验公式具有一定的可信度。同时,基于工程设计优化需要,定义了基于回弹率的优化筛选原则,用于筛选掉满足耗能要求但不满足回弹率要求的钢板-橡胶圈。参照结构试验的相似理论,将1 m外径的钢板-橡胶圈的经验公式推广到更多不同外径钢板-橡胶圈中。最后,提出了一种较为实用的用于桥梁防撞结构的钢板-橡胶圈的设计流程,并依照设计流程给出了相关的设计算例。
        Steel and rubber are 2 common engineering materials,which have good energy absorption and rebound performance. To integrate the excellent properties of the 2 materials for engineering design,a steel plate-rubber energy absorption ring( hereafter called steel plate-rubber ring) composed of outer steel plate,rubber ring and inner steel plate is designed for anti-collision design,and a design method based on steel plate-rubber ring is conducted. Twenty-five finite element models of steel plate-rubber ring with 1 m outer diameter and different structural parameters( steel plate thickness,ring wall thickness) are established by using finite element software. Among which,the thicknesses of the steel plate are 0,5,10,15,20,25 mm,and the thicknesses of ring wall are 0. 05,0. 1,0. 15,0. 2,0. 25 m. The dimensionless ratios( relative deformation ratios of steel plate thickness,ring wall thickness,ring radial dimension) are defined. The empirical formulas of the ring's performance parameters( energy absorption) and these dimensionless ratios are established through numerical simulation and statistical analysis, and the corresponding errors are analyzed. Meanwhile,based on the optimization of engineering design,the optimal screening principle based on rebound rate is defined to screening out the steel plate-rubber ring which meets the requirement of energy absorption but does not meet the requirement of rebound rate. Referring to the similarity theory of structuretest,the empirical formula of steel plate-rubber ring with 1 m outer diameter is extended to steel plate-rubber rings with different diameters. Finally,a practical design procedure of steel plate-rubber ring for bridge anticollision structure is proposed,and the relevant design example is given according to the design procedure.
引文
[1]史元熹,金允龙,徐骏.黄石长江大桥主墩防撞设施设计[C]//第十四届全国桥梁学术会议论文集.上海:中国土木工程学会桥梁及结构工程分会,2000.SHI Yuan-xi,JIN Yun-long,XU jun. Design of Anticollision Facilities for Main Pier of Huangshi Yangtze River Bridge[C]//Proceedings of the Fourteenth National Conference on Bridge. Shanghai:Bridge and Structural Engineering Branch of China Civil Engineering Society,2000.
    [2]曹映泓.湛江海湾大桥主墩柔性消能防撞设施研究实践[C]//第四届全国公路科技创新高层论文集.北京:中国公路学会,2008.CAO Ying-hong. Study on Flexible Energy Dissipation Anti-collision Facilities for Main Piers of Zhanjiang Bay Bridge[C]//Proceedings of the Fourth National Highway Science and Technology Innovation. Beijing:China Highway and Transportation Society,2008.
    [3]张海明,曹映泓,段乃民,等.湛江海湾大桥主墩防撞设施结构设计[J].中外公路,2006,26(5):82-84.ZHANG Hai-ming,CAO Ying-hong,DUAN Nai-min,et al. Structural Design of Anti-collision Facilities for Main Piers of Zhanjiang Bay Bridge[J]. Journal of China&Foreign Highway,2006,26(5):82-84.
    [4]曹映泓,左智飞,罗林阁.湛江海湾大桥柔性吸能防撞装置研究[J].中外公路,2006,26(5):72-75.CAO Ying-hong,ZUO Zhi-fei,LUO Lin-ge, Study on Flexible Energy Absorbing Anti-collision Device of Zhanjiang Bay Bridge[J]. Journal of China&Foreign Highway,2006,26(5):72-75.
    [5]倪步友,倪士强.有外钢围的桥梁柔性防船撞装置与复合材料消能防撞装置对比研究[C]//国际船桥相撞及其防护学术研讨会论文集.北京:国际船桥相撞及其防护学术研讨会学术委员会,2014.NI Bu-you, NI Shi-qiang. A Comparative Study on Flexible Ship Anti-collision Device with Steel Fence and the Composite Ship Energy Dissipation and Anti-collision Device[C]//Proceedings of International Symposium on Ship-bridge Collision and Its Protection. Beijing:Academic Committee of International Symposium on Shipbridge Collision and Its Protection,2014.
    [6]吕忠达,杨黎明.象山港公路大桥桥墩抗船撞柔性防护技术及实船撞击试验[C]//国际船桥相撞及其防护学术研讨会论文集.北京:国际船桥相撞及其防护学术研讨会学术委员会,2014.LZhong-da,YANG Li-ming. Bridge Pier Anti-collision Flexible Protection Technology and Ship Impact Test for Xiangshan Port Highway Bridge[C]//Proceedings of International Symposium on Ship-bridge Collision and Its Protection. Beijing:Academic Committee of International Symposium on Ship-bridge Collision and Its Protection,2014.
    [7]刘慈军.桥墩抗大吨位船舶撞击柔性装置耐久性设计研究[C]//国际船桥相撞及其防护学术研讨会论文集.北京:国际船桥相撞及其防护学术研讨会学术委员会,2014.LIU Ci-jun. Study on Durability Design of Flexible Device for Large Tonnage Ship Impact against Bridge Pier[C]//Proceedings of International Symposium on Shipbridge Collision and Its Protection. Beijing:Academic Committee of International Symposium on Ship-bridge Collision and Its Protection,2014.
    [8]倪步友,倪士强.黏滞性高耗能柔性防撞圈的研制和试验[C]//国际船桥相撞及其防护学术研讨会论文集,北京:国际船桥相撞及其防护学术研讨会学术委员会,2014.NI Bu-you, NI Shi-qiang. Development and Test of Viscosity and High Energy Dissipation Flexible Anticollision Ring[C]//Proceedings of International Symposium on Ship-bridge Collision and Its Protection.Beijing:Academic Committee of International Symposium on Ship-bridge Collision and Its Protection,2014.
    [9]陈国虞.从能量吸收评价玻纤复合材料桥梁防船撞装置[J].玻璃钢,2014,(4):22-28.CHEN Guo-yu. Evaluation of Glass Fiber Composite Bridge Anti-collision Device from Energy Absorption[J].Glass Fiber Reinforced Plastics,2014,(4):22-28.
    [10]张南,许琦,刘钊,等.缓冲器对钢筋混凝土桥墩撞击性能影响的试验研究[J].公路交通科技,2009,(26)12:83-90.ZHANG Nan,XU Qi,LIU Zhao,et al. Experimental Research on Effect of Buffer on Impact Performance of Reinforced Concrete Pier[J]. Highway Traffic Technology,2009,(26)12:83-90.
    [11]胥睿.钢板-橡胶混凝土复合覆层应用于桥墩防撞的研究[D],北京:北京交通大学,2017.XU Rui. Research on Steel Plate-rubber Concrete Composite Coating Applied to Bridge Pier Anti-collision[D]. Beijing:Beijing Jiaotong University,2017.
    [12]孙霁.桥梁防撞设施数值仿真研究[D].上海:同济大学,2005.SUN Ji. Study on Numerical Simulation of Bridge Anticollision Facilities[D]. Shanghai:Tongji University,2005.
    [13]朱政,基于组合式耗能筒的浮式防撞结构研究[D].上海:同济大学,2015.ZHU Zheng. Study on Floating Anti-collision Structure Based on Combined Energy Dissipation Tube[D].Shanghai:Tongji University,2015.
    [14]郑明军,王文静,陈政南,等.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工业,2003,50(8):462-465.ZHENG Ming-jun,WANG Wen-jing,CHEN Zheng-nan,et al. Determination for Mechanical Constants of Rubber Mooney-Rivlin Model[J]. China Rubber Industry,2003,50(8):462-465.
    [15]刘卫卫.多类型单元混合建模方法研究[D].成都:电子科技大学,2013.LIU Wei-wei. Research on Multi-type Unit Mixed Modeling Method[D]. Chengdu:University of Electronic Science and Technology of China,2013.
    [16]吴长河,冯晓伟,叶培,等.应变率对硫化橡胶压缩力学性能的影响[J].功能材料,2013,44(8):1098-1101.WU Chang-he,FENG Xiao-wei,YE pei,et al. Effect of Strain Rate on Mechanical Properties of Vulcanized Rubber[J]. Journal of Functional Materials,2013:44(8):1098-1101.
    [17]秦严严.管道接口橡胶密封圈力学性能研究及应用[D].天津:河北工业大学,2011.QIN Yan-yan. Research and Application of Mechanical Properties of Rubber Seal for Pipeline Interface[D].Tianjin:Hebei University of Technology,2011.
    [18]周明华.土木工程结构试验与检测[M],南京:东南大学出版社,2008:72-79.ZHOU Ming-hua. Civil Engineering Structure Test and Detection[M]. Nanjing:Southeast University Press,2008:72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700