用户名: 密码: 验证码:
利用汤姆逊离子谱仪测量超短超强激光质子能谱
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A measurement of the ultra-short ultra-intense laser proton spectrum by Thomson spectrometer
  • 作者:牟洪臣 ; 王光昶 ; 梁栋 ; 陈旭 ; 张建炜 ; 郑志坚
  • 英文作者:MU Hong-Chen;WANG Guang-Chang;LIANG Dong;CHEN Xu;ZHANG Jian-Wei;ZHENG Zhi-Jian;College of physics and electronic engineering, Harbin Normal University;Teaching and Research Section of Physics,Chengdu Medical College;Research Center of Laser Fusion,CAEP;
  • 关键词:超短超强激光 ; 汤姆逊离子谱仪 ; 质子能谱 ; 截止能量 ; 加速机制
  • 英文关键词:Ultra-short ultra-intense laser;;Thomson ion spectrometer;;Proton spectrum;;Cut-off energy;;Acceleration mechanisms
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:哈尔滨师范大学物理与电子工程学院;成都医学院物理教研室;中国工程物理研究院激光聚变研究中心;
  • 出版日期:2019-02-15 14:14
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(10535030);; 发育与再生四川省重点实验室基金重点项目(SYS12-003)
  • 语种:中文;
  • 页:YZYF201903017
  • 页数:4
  • CN:03
  • ISSN:51-1199/O4
  • 分类号:114-117
摘要
本文给出了利用汤姆逊(Thomson)离子谱仪测量超短超强激光与等离子体相互作用中产生的高能质子能谱的一种方法.该方法是利用Thomson离子谱仪(平均磁场强度为0.167 T,电场加高压为3000 V,电场强度约为0.429 MV/m)和固体核径迹探测器CR39相结合,在固体靶背表面测量了激光的高能质子能谱.结果显示:质子沿着靶背法线方向发射,质子在一定能量处出现截止,截止能量与靶厚度和靶材料密切相关.分析认为,靶法线鞘层加速(TNSA)机制是质子能谱分布及能量截止的主要原因.
        This paper presents a method of using Thomson ion spectrometer to measure ultra-short ultra-intense laser interaction with plasma produced in high-energy proton energy spectrum. This method is to use the Thomson ion spectrometer(average 0.167 T magnetic field intensity, electric field and high voltage is 3000 V, the electric field intensity of 0.429 MV/m) and solid state nuclear track detector CR39, combining target back in solid surface was measured by laser high-energy proton spectroscopy. Results showed that the proton emission in the direction of the target back to normal, appear as protons in a Cut-off energy, as energy is closely related to the target thickness and target materials. Sheath after analysis, target normal sheath acceleration(TNSA)mechanisms is a major cause of proton energy spectrum distribution and energy as.
引文
[1] Pukhov A.Three-dimensional simulation of ion acceleration from a foil Irradiated by a short-pulse laser [J].Phys.Rev.Lett.,2001,86:3562.
    [2] Zweiback J,Smith R A,Cowan T E,et al.Nuclear fusion driven by coulomb explosions of large deuterium clusters[J].Phys.Rev.Lett.,2000,84:2634.
    [3] Borghesi M,Schiavi A,Campbell D H,et al.Proton imaging:a diagnostic for inertial confinement fusion/fast ignitor studies[J].Plasma Phys.Control.Fusion,2001,43:A267.
    [4] Bulanov S S,Brantov A,Bychenkov V Y,et al.Accelerating protons to therapeutic energies with ultra-intense ultra-clean and ultra-short laser pulses[J].Med.Phys.,2008,35:1770.
    [5] Kodama R,Norreys P A,Mima K,et al.Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J].Nature,2001,412:798.
    [6] Peng Yang.The simulation research on proton acceleration by laser plasma interaction[D].Zhengzhou:Doctorial Dissertation of Zhengzhou University,2017 (in Chinese) [杨鹏.激光等离子体相互作用加速质子的模拟研究[D].郑州:郑州大学博士学位论文,2017]
    [7] Wilks S C,Langdon A B,Cowan T E,et al.Energetic proton generation in ultra-intense laser-solid interactions[J].Phys.Plasma,2001,8:542.
    [8] Chen M,Sheng Z G,Dong Q L,et al.Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas[J].Phys.Plasmas,2007,14:053102.
    [9] Esirkepov T,Borghesi M,Bulanov S V,et al.highly efficient relativistic-ion generation in the laser-piston regime[J].Phys.Rev.Lett.,2004,92:175003.
    [10] Nakamura T,Fukuda Y,Yogo A,et al.High energy negative ion generation by Coulomb implosion mechanism[J].Phys.Plasmas,2009,16:113106.
    [11] Li Y T,Xu M H,Zhang J.Generation of high energy ions in ultraintense laser-plasma interactions[J].Physics,2007,36:39 (in Chinese) [李玉同,徐妙华,张杰.超强激光脉冲与等离子体相互作用中高能离子的产生[J].物理,2007,36:39]
    [12] Wilks S C,Kruer W L,Tabak M,et al.Absorption of ultra-intense laser pulses[J].Phys.Rev.Lett.,1992,69:1383.
    [13] Fuchs J,Antici P,D'Humières E,et al.Laser-driven proton scaling laws and new paths towards energy increase[J].Nat.Phys.,2006,2:48.
    [14] Qin X Z,Hong W,Tian C L,et al.Calculation of proton cut2off energy accelerated in interaction of fs laser pulse and solid targets[J].High Power Laser Particle Beams,2008,20:1373 (in Chinese) [秦孝尊,洪伟,田成林,等.超短超强激光与固体靶相互作用中发射质子的截止能量估算[J].强激光与粒子束,2008,20:1373]
    [15] Tang C M,Chen X X,Hong W,et al.Experimental research of protons generated femtosecond laser and double target interaction at the rear side of target[J].J.Xinyang Normal Univ.:Nat.Sci.Ed.,2012,25:172 (in Chinese) [唐翠明,陈晓旭,洪伟,等.飞秒激光与双层靶相互作用靶背质子加速实验研究[J].信阳师范学院学报:自然科学版,2012,25:172]
    [16] Wang G C,Zhang J W,Liu Y H,et al.Experimental study of femtosecond laser-produced medical energy proton beam[J].J.Optoelectron.Laser,2011,22:640 (in Chinese) [王光昶,张建炜,刘玉红,等.飞秒激光诱发的医用质子束特性的实验研究[J].光电子.激光,2011,22:640]
    [17] Wang C J,Wang G C,Wang Y P,et al.Study of high energy protons generate and accelerate in femtosecond laser interaction[J].J.At.Mol.Phys.,2014,31:764 (in Chinese) [王昌军,王光昶,王亚平,等.飞秒激光中高能质子的产生与加速的研究[J].原子与分子物理学报,2014,31:764]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700