用户名: 密码: 验证码:
下一代高速列车关键技术特征分析及展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and Prospects of Key Technical Features of Next Generation High Speed Trains
  • 作者:缪炳荣 ; 张卫华 ; 池茂儒 ; 周宁 ; 宋冬利 ; 杨树旺
  • 英文作者:MIAO Bingrong;ZHANG Weihua;CHI Maoru;ZHOU Ning;SONG Dongli;YANG Shuwang;State Key Lab of Traction Power, Southwest Jiaotong University;
  • 关键词:高速列车 ; 下一代 ; 动力学 ; 集成设计 ; 多学科优化
  • 英文关键词:high-speed railway;;carbody structure;;multi-body system;;finite element method;;structural fatigue
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:西南交通大学牵引动力国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:铁道学报
  • 年:2019
  • 期:v.41;No.257
  • 基金:国家自然基金(51375405,51775456);; 牵引动力国家重点实验室自主研究课题(2016TPL_T10);; 中国铁路总公司科技研究开发计划(2015J011-B)
  • 语种:中文;
  • 页:TDXB201903009
  • 页数:13
  • CN:03
  • ISSN:11-2104/U
  • 分类号:64-76
摘要
未来高速列车的主要设计理念和概念随着新技术的不断出现正在发生很多根本性变化,这也是下一代高速列车研究的热点技术问题和重要内容。其核心技术主要体现在速度、效率、环保和节能降耗等诸多技术指标的优化。针对下一代高速列车关键技术特征的研究现状进行详细的技术分析,并在国内外高速列车未来技术的相关文献成果基础上,对下一代高速列车的关键技术问题进行系统整理和分析,对一些关键技术进行定性和定量研究。结果表明,下一代高速列车的关键技术的研究,对于我国掌握下一代高速列车的设计技术及关键问题的发展方向十分迫切。
        The main design thought and concepts of future high-speed trains are undergoing fundamental changes with the emergence of new technologies. These are also some hot technical issues and the important contents in the research of the next generation high-speed trains. The core technologies are mainly reflected in the optimization of many technical indexes, such as speed, efficiency, environmental protection and energy saving. In this paper, a detailed technical analysis on the research status of the key technical characteristics of the next generation high-speed trains was made. Based on the related literatures in China and the world of the future technologies of high-speed trains, the key technical problems of the next-generation trains were systematically collated and analyzed. Qualitative and quantitative analysis was made on some key technologies. The results show that the research on the key technologies of the next generation trains is urgent and necessary for China to master the development direction of the key issues of design technology for the next generation trains.
引文
[1] VICKERMANR. High-speed Rail in Europe: Experience and Issues for Future Development[J]. The Annals of Regional Science, 1997, 31(1):21-38.
    [2] GIVONI M. Development and Impact of the Modern High-speed Train: a Review[J]. Transport Reviews, 2006, 26(5):593-611.
    [3] PERIS E, GOIKOETXEA J. Roll 2 Rail:New Dependable Rolling Stock for a More Sustainable, Intelligent and Comfortable Rail Transport in Europe[J]. Transportation Research Procedia, 2016, 14:567-574.
    [4] 张卫华,缪炳荣,王婷婷,等. 下一代高速列车发展战略研究[R].成都:西南交通大学,2017.
    [5] 何维.“复兴号”中国标准动车组首发[EB/OL]. (2017-06-27)[2018-01-11]. http://www.peoplerail.com/rail/show-456-335565-1.html
    [6] HALTUF M. Shift2Rail JU from Member State's Point of View[J]. Transportation Research Procedia, 2016, 14:1819-1828.
    [7] TOKODY D, FLAMMINI F. The Intelligent Railway System Theory[J]. International Transportation, 2017, 69(1):38-40.
    [8] RAULEFSR, SAND S, ECHEVERRIA E, et al. Project ROLL2RAIL:New Dependable Rolling Stock for a More Sustainable[R]. Paris:French Institute of Science and Technology for Transport, 2016.
    [9] AGIS F.Aero Liner 3000 Double-decker High-speed Train[EB/OL]. (2017-10-31) [2018-01-11]. https://wordlesstech.com/aeroliner3000-double-decker-high-speed-train/.
    [10] WINTER J A. 3000-increasing Productivity of the GB Rail Network[J]. European Railway Review, 2016, 22(3):32-35.
    [11] KURZECK B, HECKMANN A, WESSELER C. Optimizing Running Dynamics of the DLR Next Generation Train with Mechatronic Track Guidance[J]. SIMPACK News, 2012, 12:2-6.
    [12] KURZECK B, VALENTE L. A Novel Mechatronic Running Gear:Concept, Simulation and Scaled Roller Rig Testing[C]//Proceeding of the 9th World Congress on Railway Research. Frankreich:Lille,2011.
    [13] Alstom Corporation. Alstom Showcases its Complete Rail Transport Solutions at Eurasia Rail Turkey 2017[EB/OL]. (2017-03-01)[2018-01-11]. http://www.eyeofriyadh.com/news/details/alstom-showcases-its-complete-rail-transport-solutions-at-eurasia-rail-turkey-2017.
    [14] KERA K, ISOBE E, KAWAHATA S. Hitachi’s Initiatives in Addressing the Challenges of 21st Century Railway Systems[J]. Hitachi Review, 1999, 48(3):103-106.
    [15] TAKATSU T. The History and Future of High-speed Railways in Japan[J]. Japan Railway & Transport Review, 2007, 48:6-21.
    [16] MIYAMOTO M, SUDAY. Recent Research and Development on Advanced Technologies of High-speed Railways in Japan[J]. Vehicle System Dynamics, 2003, 40(1/2/3):55-99.
    [17] MOCHIDA T, YAMAMOTO N, GODAK, et al. Development and Maintenance of Class 395 High-speed Train for UK High Speed 1[J]. Hitachi Review, 2010, 59(1):39-40.
    [18] KAHNERT P. Development and Optimization of Innovative Running Gear Concepts for an Ultra-high-speed Train[D]. Sweden :KTH Royal Institute of Technology, 2015.
    [19] MARZ A, LASKA B, KRAFFT E, et al. Latest Developments in Increasing the Power Density of Traction Drives[C]//International Power Electronics Conference. New York:Institute of Electrical and Electronic Engineers, 2014:2113-2119.
    [20] HIRTENLECHNER J, BRANDSTETTERJ. SF7000-das Innovative Fahrwerkskonzept als Antwort auf Whole Life Cost Modelle[J]. ZEV Rail Glasers Annalen, 2013, 137(1):8-13.
    [21] KOSEKI T. Technical Trends of Railway Traction in The World[C]//International Power Electronics Conference. New York:Institute of Electrical and Electronic Engineers, 2010:2836-2831.
    [22] SEBESANS I, BABICI L M, FLOROIU D. Experimental Measurements of Composite Materials from the Bearing Structure of Railway Vehicles[C]//20th Innovative Manufacturing Engineering and Energy Conference: Materials Science and Engineering. UK:IOP Publishing, 2016:012064.
    [23] HIRSCH J. Aluminium in Innovative Light-weight Car Design[J]. Materials Transactions, 2011, 52(5):818-824.
    [24] KOENIG J, FRIEDRICH I H E. Integral Consideration of the Lightweight Design for Railway Vehicles[C]//Proceedings of Young Researchers Seminar 2011. Denmark :Copenhagen, 2011:1-13.
    [25] YANG K, BERBINEAU M, GHYS J P, et al. Propagation Measurements with Regional Train at 60 GHz for Virtual Coupling Application[C]//11th European Conference on Antennas and Propagation (EUCAP). New York:Institute of Electrical and Electronic Engineers, 2017:126-130.
    [26] TARKIAN M. Design Automation for Multidisciplinary Optimization:A High Level Cad Template Approach[D]. Sweden :Link?ping University Electronic Press, 2012.
    [27] GOIKOETXEA J Roadmap. Towards the Wireless Virtual Coupling of Trains[C]//International Workshop on Communication Technologies for Vehicles. Cham:Springer, 2016:3-9.
    [28] CAROLIN A, ANDERSON R, HEISSENBERGER R, et al. Innovative Intelligent Management of Railway Bridges, In2Rail-A European Horizon 2020 Project[C]//19th IABSE Congress. Stockholm:International Association for Bridge and Structural Engineering, 2016:2552-2561.
    [29] MIAO B R, ZHANG W H, HUANG G H, et al. Research of High Speed Train Carbody Structure Vibration Behaviors and Structure Fatigue Strength Characteristic Technology[J]. Advanced Materials Research, 2012, 544:256-261.
    [30] 缪炳荣.现代车辆结构疲劳寿命预测与耐久性分析[M].北京:科学出版社,2017.
    [31] LUKASZEWICZ P, ANDERSSON E. Green Train Energy Consumption[D]. Storckholm:KTH Railway Group,2009.
    [32] LI L, DONG W, JI Y, et al. Minimal-energy Driving Strategy for High-speed Electric Train with Hybrid System Model[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1642-1653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700