用户名: 密码: 验证码:
风电叶片玻璃纤维布铺层装备的运动学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:KINEMATICS ANALYSIS OF EQUIPMENT FOR WIND TURBINE BLADE FIBERGLASS FIBRIC
  • 作者:张磊安 ; 王景华 ; 黄雪梅 ; 刘卫生 ; 魏修亭
  • 英文作者:Zhang Leian;Wang Jinghua;Huang Xuemei;Liu Weisheng;Wei Xiuting;College of Mechanical Engineering,Shandong University of Technology;Key Laboratory of Marine Wind Power Blade Design and Manufacturing Technology of Jiangsu Province,Lianyungang Zhongfu Lianzhong Composite Materials Group Co.,Ltd.;
  • 关键词:运动学分析 ; 运动模拟 ; 自动化装备 ; 风电叶片 ; 铺层试验
  • 英文关键词:kinematic analysis;;motion simulation;;automated equipment;;wind turbines blades;;layering test
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:山东理工大学机械工程学院;江苏省海上风电叶片设计与制造技术重点实验室连云港中复连众复合材料集团有限公司;
  • 出版日期:2019-05-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:山东省重点研发计划(2018GGX100304);; 第11批中国博士后科学基金特别资助(2018T110704);; 第62批中国博士后科学基金一等资助(2017M620291)
  • 语种:中文;
  • 页:TYLX201905032
  • 页数:6
  • CN:05
  • ISSN:11-2082/TK
  • 分类号:222-227
摘要
针对风电叶片玻璃纤维布铺层过程的多自由度特性,开发一套自动化铺层装备。对布辊回转单元构建基于双坐标系的位姿变换矩阵,得到布辊的运动学模型,并获得影响铺层路径及速度的因素,可视化得到玻璃纤维布的铺层曲面轨迹。采用该装备进行现场铺布试验表明,叶片模具的实际曲面,仿真与试验的铺层路径轨迹误差不超过20 mm,速度误差小于1.5 mm/s,机构的试验误差符合玻璃纤维布铺层的技术要求,可为后续铺层控制算法开发奠定了理论依据。
        Director of the multidimensional characteristics of wind turbine blade laying process,a set of automated equipment of laying for fiberglass fabric was designed. The pose transformation matrix based on the two-coordinate system was constructed for the cloth roller rotating head,and the kinematic model of the cloth roller was obtained. The factors affecting the track and speed of the laying were obtained,and the pavement surface track of the fiberglass fabric was obtained visually. The on-site paving test showed that the paving track error,which based on the actual curved surface of the blade mold,between simulation and test was within 20 mm,at the same time,speed error was within 1.5 mm/s. The test error of the mechanism could meet the requirements of the fiberglass fabric laying technology and provided subsequent layer control algorithm with the theoretical basis.
引文
[1]石可重,赵晓路,徐建中.大型风电机组叶片疲劳试验研究[J].太阳能学报,2011,32(8):1264—1268.[1] Shi Kezhong,Zhao Xiaolu,Xu Jianzhong. Research on fatigue test of large horizontal axis wind turbine blade[J]. Acta Energiae Solaris Sinica,2011,32(8):1264—1268.
    [2] Chen Xiao,Zhao Wei,Zhao Xiaolu,et al. Failure test and finite element simulation of a large wind turbine composite blade under static loading[J]. Energy,2014,7:2274—2297.
    [3] Hayashi D,Huenteler J,Lewis J I. Gone with the wind:A learning curve analysis of China′s wind power industry[J]. Energy Policy,2018,120:38—51.
    [4] Zhao Pan,Shirinzadeh Bijan,Shi Yaoyao,et al. Multipass layup process for thermoplastic composites using robotic fiber placement[J]. Robotics and Computer Integrated Manufacturing,2018,49:277—284.
    [5] Shirinzadeh B,Cassidy G,Oetomo D,et al. Trajectory generation for open-contoured structures in robotic fiber placement[J]. Robotics and Computer-Integrated Manufacturing,2007,23:380—394.
    [6] Blom A W,Abdalla M M,Gürdal Z. Optimization of courselocations in fiber-placed panels for general fiber angledistributions[J]. Composites Science and Technology,2010,70(4):564—570.
    [7]宋清华,肖军,文立伟,等.热塑性复合材料自动纤维铺放装备技术[J].复合材料学报,2016,33(6):1214—1222.[7] Song Qinghua,Xiao Jun,Wen Liwei,et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1214—1222.
    [8]刘哲,金达锋,范志瑞.基于密度分布曲线法的复合材料变刚度铺层优化[J].复合材料学报,2015,32(6):1737—1744.[8] Liu Zhe,Jin Dafeng,Fan Zhirui. Ply optimization of variable stiffness for composite based on density distribution curve method[J]. Acta Materiae Compositae Sinica,2015,32(6):1737—1744.
    [9]孙鹏文,侯战华,岳彩宾,等.基于遗传算法的风力机叶片结构铺层厚度优化[J].太阳能学报,2016,37(6):1566—1572.[9] Sun Pengwen,Hou Zhanhua,Yue Caibin,et al. Ply thickness optimization of wind turbine blade based on genetic algorithm[J]. Acta Energiae Solaris Sinica,2016,37(6):1566—1572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700