用户名: 密码: 验证码:
高温脱水石膏岩物理力学效应的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on physico-mechanical effects of high temperature dehydrated gypsum rock
  • 作者:苏承东 ; 韦四江 ; 许崇帮 ; 苏发强
  • 英文作者:SU Chengdong;WEI Sijiang;XU Chongbang;SU Faqiang;School of Energy Science and Engineering,Henan Polytechnic University;Collaborative Innovation Center of Coal Work Safety,Henan Province;Research Institute of Highway Ministry of Transport;
  • 关键词:岩石力学 ; 石膏岩 ; 高温脱水 ; 二水石膏 ; 三轴压缩 ; 物理力学效应
  • 英文关键词:rock mechanics;;gypsum rock;;high temperature dehydration;;dihydrate gypsum;;triaxial compression;;physico-mechanical effect
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:河南理工大学能源科学与工程学院;煤炭安全生产河南省协同创新中心;交通运输部公路科学研究所;
  • 出版日期:2018-12-13 15:58
  • 出版单位:岩石力学与工程学报
  • 年:2019
  • 期:v.38;No.349
  • 基金:河南省教育厅自然科学研究计划项目(2010A44002);; 河南省科技攻关项目(182102210317);; 国家自然科学基金资助项目(51278233)~~
  • 语种:中文;
  • 页:YSLX201902004
  • 页数:13
  • CN:02
  • ISSN:42-1397/O3
  • 分类号:43-55
摘要
为了探讨高温脱水对天然石膏岩物理力学效应的影响,将天然石膏岩在高温220℃控制脱水时间制取含不同结晶水石膏岩试样,分别对石膏岩试样进行扫描电镜、超声波测试和常规三轴压缩试验,分析高温脱水时间对石膏岩微观结构、孔隙率、纵波波速、三轴抗压强度,弹性模量、峰值应变、黏结力和内摩擦角的影响。结果表明:高温作用对石膏的作用是极其复杂物理化学过程,高温脱水对石膏岩具有明显弱化作用,随着高温脱水时间的增加,石膏岩内部晶体结构和形状逐渐发生变化,试样内部微裂纹、微孔洞的数量逐渐增多,导致其物理力学性能不断劣化;在高温220℃石膏岩脱水量、视密度和孔隙率与脱水时间呈非线性关系,在0~6 h以内裂解脱水速率较快,在6~24 h范围内脱水速率有所减缓。高温脱水后石膏试样纵波波速均有不同程度降低,在0~6 h以内损伤因子随孔隙率增加而单调降低,两者大致呈线性关系,超过6h以后脱水石膏岩损伤因子变化不大;石膏岩三轴压缩全程的变形特征受围压和高温脱水时间的共同影响,脱水时间0~4 h对石膏岩试样变形参数的影响远大于对围压的影响,超过4h以后脱水时间、围压对石膏岩弹性模量和变形模量的影响不大,随着围压与脱水时间的增加脆性减弱塑性增强;石膏岩试样三轴峰值强度随围压增大而单调增加,符合Coulomb强度准则。高温脱水对石膏岩具有明显弱化作用,扣除围压影响后石膏岩材料强度与脱水时间呈负相关;石膏岩试样破坏形态与围压高低没有直接关系,脱水时间越长破坏形态越复杂。
        In order to investigate the effect of high temperature dehydration on physical and mechanical properties of natural gypsum rock,standard rock samples contained different crystal water were prepared at 220 ℃ within a certain time and tested with scanning electron microscope,ultrasonic wave and conventional triaxial compression. The influence of the dehydration time on physical and mechanical behaviors of gypsum rock,including microstructure,porosity,longitudinal wave velocity,conventional triaxial compressive strength,elastic modulus,peak strain,cohesion and friction angle,was analyzed. The results are showed as follows. High temperature effect on gypsum rock is an extreme complex physical and chemical process. Gypsum rock can be obviously weakened by high temperature dehydration. With increasing the dehydration time,the crystal structure and shape of gypsum rock change gradually and the numbers of micro-cracks and micro-voids increase gradually,which leads to the deterioration of the physical and mechanical properties of gypsum rock. The dehydration amount,the apparent density and the porosity are nonlinear with the dehydration time. The dehydration rate of gypsum rock is larger within 6 hours while decreases within 6 to 24 hours. P-wave velocity of gypsum samples decreases to some extent due to high temperature dehydration. The damage factor decreases linearly with the porosity within 6 hours but changes little after 6 hours. The deformation characteristics of gypsum rock under triaxial compression are influenced by the confining pressure and the high temperature dehydration time. The influence of the dehydration time on the deformation parameters of gypsum rock samples including the elastic modulus and the deformation modulus is far greater than that on the confining pressure within 4 hours,but the confining pressure has little influence on the elastic modulus and the deformation modulus. With increasing the confining pressure and the dehydration time,the brittleness of the specimens decreases but the plasticity increases. Triaxial peak strength of the samples increases monotonously with the confining pressure,which accords with Coulomb strength criterion. The strength of gypsum rock material is negatively correlated with the dehydration time without considering the influence of the confining pressure. The failure mode of gypsum rock samples has no direct relationship with the confining pressure and is more complex with longer dehydration time.
引文
[1]杨春和,梁卫国,魏东吼.中国盐岩能源地下储存可行性研究[J].岩石力学与工程学报,2005,24(24):4 409-4 417.(YANG Chunhe,LIANG Weiguo,WEI Donghou.Investigation on possibility of energystorage in salt rock in China[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(24):4 409-4 417.(in Chinese))
    [2]杨春和,李银平,屈丹安,等.层状盐岩力学特性研究进展[J].力学进展,2008,38(4):484-494.(YANG Chunhe,LI Yinping,QUDan′an,et al.Advances in researches of the mechanical behaviors of bedded salt Rocks[J].Advances in Mechanics,2008,38(4):484-494.(in Chinese))
    [3]梁卫国,杨春和,赵阳升.层状盐岩储气库物理力学特性与极限运行压力[J].岩石力学与工程学报2008,27(1):22-27.(LIANGWeiguo,YANG Chunhe,ZHAO Yangsheng.Physico-mechanical properties and limit operation pressure of gas deposit in bedded salt Rock[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(1):22-27.(in Chinese))
    [4]孟涛,梁卫国,代进州.盐岩水平溶腔储库可用性的数值模拟研究[J].矿业研究与开发,2013,(4):10-15.(MENG Tao,LIANGWeiguo,DAI Jinzhou.Numerical simulation study on the usability of horizontal storage cavern[J].Mining Research and Development,2013,(4):10-15.(in Chinese))
    [5]刘沐宇,徐长佑.硬石膏的流变特性及其长期强度的确定[J].中国矿业,2000,9(2):53-55.(LIU Muyu,XU Changyou.Rheological properties of anhydrite and determination of its long-time strength[J].China Mining Magazine,2000,9(2):53-55.(in Chinese))
    [6]SOPPE W J,DONKER H,GARCIA C A,et al.Radiation-induced stored energy in salt rock[J].Journal of Nuclear Materials,1994,217:1-31.
    [7]梁卫国,赵阳升,徐素国.240℃内盐岩物理力学特性的实验研究[J].岩石力学与工程学报,2004,23(14):2 365-2 369.(LIANGWeiguo,ZHAO Yangsheng,XU Suguo.Testing study on physical and mechanical properties of heated salt rock within 240℃[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(14):2 365-2 369.(in Chinese))
    [8]姜德义,张军伟,陈结,等.岩盐储库建腔期难溶夹层的软化规律研究[J].岩石力学与工程学报,2014,33(5):865-873.(JIANGDeyi,ZHANG Junwei,CHEN Jie,et al.Research on softening law of insoluble interlayer during salt cavern building[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(5):865-873.(in Chinese))
    [9]姜德义,任涛,陈结,等.含软弱夹层盐岩型盐力学特性试验研究[J].岩石力学与工程学报,2012,31(9):1 797-1 803.(JIANGDeyi,REN Tao,CHEN Jie,et al.Experimental study of mechanical characteristics of molded salt rock with weak interlayer[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1 797-1 803.(in Chinese))
    [10]高红波,梁卫国,杨晓琴,等.高温盐溶液浸泡作用下石膏岩力学特性试验研究[J].岩石力学与工程学报,2011,30(5):935-943.(GAO Hongbo,LIANG Weiguo,YANG Xiaoqin,et al.Experimental study of mechanical property of gypsum rock soaked in hot saturated brine[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(5):935-943.(in Chinese))
    [11]梁卫国,张传达,高红波,等.盐水浸泡作用下石膏岩力学特性试验研究[J].岩石力学与工程学报,2010,29(6):1 156-1 163.(LIANG Weiguo,ZHANG Chuanda,GAO Hongbo,et al.Experimental study of mechanical properties of gypsum saturated in brine[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(6):1 156-1 163.(in Chinese))
    [12]郭印同,杨春和.硬石膏常规三轴压缩下强度和变形特性的试验研究[J].岩土力学,2016,31(6):1 776-1 780.(GUO Yintong,YANGChunhe.Experimental investigation on strength and deformation properties of anhydrite under conventional triaxial compression[J].Rock and Soil Mechanics,2016,31(6):1 776-1 780.(in Chinese))
    [13]郭印同,赵克烈,孙冠华,等.周期荷载下盐岩的疲劳变形及损伤特性研究[J].岩土力学,2011,32(5):1 353-1 359.(GUO Yintong,ZHAO Kelie,SUN Guanhua,et al.Experimental study of fatigue deformation and damage characteristics of salt Rock under cyclic loading[J].Rock and Soil Mechanics,2011,32(5):1 353-1 359.(in Chinese))
    [14]李亚,余宏明,李科,等.干湿循环作用下石膏岩劣化效应的试验研究[J].长江科学院院报,2017,34(3):63-66.(LI Ya,YUHongming,LI Ke,et al.Laboratory study on degradation of gypsum rock with dry-wet cycles[J].Journal of Yangtze River Scientific Research Institute,2017,34(3):63-66.(in Chinese))
    [15]任松,邓高岭,吴建勋.等.石膏岩淡水浸泡软化试验研究[J].岩土力学,2017,38(4):943-950.(REN Song,DENG Gaoling,WUJianxun,et al.Immersion tests on gypsum Rocks using fresh water[J].Rock and Soil Mechanics,2017,38(4):943-950.(in Chinese))
    [16]刘伟,李银平,霍永胜,等.盐岩地下储库围岩界面变形与破损特性分析[J].岩土力学,2013,34(6):1 621-1 627.(LIU Wei,LI Yinping,HUO Yongsheng,et al.Analysis of deformation and fracture characteristics of wall Rock interface of underground storage caverns in salt Rock formation[J].Rock and Soil Mechanics,2013,34(6):1 621-1 627.(in Chinese))
    [17]中华人民共和国煤炭工业部.煤与岩石物理力学性质测定方法[M].北京:中国标准出版社,1988:32-33.(Coal Industry Ministry of the People′s Republic of China.Measuring methods of physico-mechanical properties for coal and rock[M].Beijing:Standards Press of China,1988:32-33.(in Chinese))
    [18]陈平.结晶矿物学[M].北京:化学工业出版社,2006:162-163.(CHEN Ping.Crystalline mineralogy[M].Beijing:Chemical Industry Press,2006:162-163.(in Chinese))
    [19]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60.(YOU Mingqing.Effect of confining pressure on the Young’s modulus of rock specimen[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(1):53-60.(in Chinese))
    [20]赵云龙,徐洛屹.石膏应用技术问答[M].北京:中国建材工业出版社,2016:1-5.(ZHAO Yunlong,XU Luoyi.Technical question and answers of gypsum application[M].Beijing:China Building Materials Press,2016:1-5.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700