用户名: 密码: 验证码:
甲硫氨酸沉积物和电化学沉积聚噻吩改性阳极对海底微生物燃料电池电化学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Methionine in Marine Sediment and Polythiophene Modified Anodes on Electrochemical Performances of Microbial Fuel Cells
  • 作者:郭满 ; 宰学荣 ; 姬泓巍 ; 杨志伟 ; 张皓爽 ; 刘志 ; 付玉彬
  • 英文作者:GUO Man;ZAI Xuerong;JI Hongwei;YANG Zhiwei;ZHANG Haoshuang;LIU Zhi;FU Yubin;Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education,College of Chemistry and Chemical Engineering,Ocean University of China;School of Material Science and Engineering,Ocean University of China;
  • 关键词:海底沉积物 ; 微生物燃料电池 ; 聚噻吩改性阳极 ; L-甲硫氨酸改性沉积物 ; 电化学性能
  • 英文关键词:marine sediment;;microbial fuel cells;;polythiophene modified anode;;L-methionine-modified sediments;;electrochemical performances
  • 中文刊名:CLKY
  • 英文刊名:Development and Application of Materials
  • 机构:中国海洋大学化学化工学院海洋化学理论与工程技术教育部重点实验室;中国海洋大学材料科学与工程学院;
  • 出版日期:2017-12-15
  • 出版单位:材料开发与应用
  • 年:2017
  • 期:v.32
  • 基金:山东省自然科学基金项目(ZR2015DM002);; 国防科技创新特区项目
  • 语种:中文;
  • 页:CLKY201706005
  • 页数:10
  • CN:06
  • ISSN:41-1149/TB
  • 分类号:22-31
摘要
使用电沉积的方法制备导电聚噻吩修饰的碳毡及在沉积物中添加甲硫氨酸组成一种新型双改性阳极,以此构建海底沉积物微生物燃料电池,并对阳极的电化学性能和电池性能进行测试。结果表明,双改性阳极表面微生物的数量为空白组的11.30倍,生物膜电容是空白组的1.4倍,说明双改性阳极提高了微生物的数量;双改性阳极循环伏安电容量(302.6 F/cm~2)是空白组(38.20 F/cm~2)的8.0倍,峰电流密度为5.980 A/m~2,交换电流密度(48.29×10~(-3)m A/cm~2)是空白组(0.073 7×10-3m A/cm~2)的651.3倍,说明双改性组的氧化还原电化学活性、抗极化能力和电子转移动力学活性显著提高;双改性电池的输出功率(190.6 m W/m~2)是空白组(71.8 m W/m~2)的2.7倍,说明双改性方法提高了电池阳极的电化学性能和电池性能。
        A novel anode,with carbon felt( CF) which was electrodeposited with conductive polymer polythiophene( PTh) and Lmethionine( L-Met) added into sea mud,was creatively fabricated to construct marine sediment microbial fuel cells( MSMFCs),and electrochemical performances of the MSMFCs with the modified anodes were investigated. The results show that the amount of microorganisms attached to the modified anode is 11. 3 times of that of the unmodified one and the biofilm capacitance of modified anode is1. 4 times of that of the blank anode,indicating that the modification can help to increase the number of microorganism attached to the anode. Furthermore,the specific capacitance of the modified anode( 302. 6 F/cm~2) is 8. 0 times of that of the blank anode( 38. 20 F/cm~2),with a peak current of about 5. 980 A/m~2. The exchange current density of modified anode( 48. 29 × 10~(-3) m A/cm~2) is 651. 3 times of that of the blank anode( 0. 073 7 × 10~(-3) m A/cm~2),illustrating sigificant improvement in electrochemical activity of redox,anti-polarization capacity and electron transfer kinetic activity. The output power of the modified MSMFCs( 190. 6 m W/m~2) is 2. 7 times of that of the blank group( 71. 8 m W/m~2),which suggests that the modification improves the electrochemical performance of the anode and the battery performance.
引文
[1]付玉彬,李建海,赵仲凯,等.海底生物燃料电池作为电源驱动小型电子器件的应用研究[J].中国海洋大学学报(自然科学版)自然科学版,2012,42(6):93—98.
    [2]Das S,Mangwani N.Recent developments in microbial fuel cells:a review[J].Journal of Scientific&Industrial Research,2010,69(10):727—731.
    [3]英明,柳昭慧,赵阳国,等.外源添加物对海底沉积物微生物燃料电池性能的影响[J].海洋与湖沼,2015,46(3):489—496.
    [4]Zhou C Y,Fu Y B,Zhang H S,et al.Structure design and performance comparison of large-scale marine sediment microbial fuel cells in lab and real sea as power source to drive monitoring instruments for long-term work[J].Ionics,2017:1—9.
    [5]梁琴,姚乔尔.海洋沉积物中氨基酸组分测试的初步研究[J].海洋通报,1983(6):35—40.
    [6]Xia L,Wei Z,Wan M.Conducting polymer nanostructures and their application in biosensors[J].Journal of Colloid&Interface Science,2010,341(1):1—11.
    [7]Mi H,Zhang X,Ye X,et al.Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors[J].Journal of Power Sources,2008,176(1):403—409.
    [8]Li G,Yao Y,Yang H,et al.“Solvent annealing”effect in polymer solar cells based on poly(3-hexylthiophene)and methanofullerenes[J].Advanced Functional Materials,2010,17(10):1636—1644.
    [9]许贺,庞月红,黎小宇,等.离子液体中聚(3-溴噻吩)的电化学合成和电色效应研究[J].化学学报,2006,64(22):2254—2258.
    [10]舒昕,李兆祥,夏江滨.聚噻吩的合成方法[J].化学进展,2015,27(4):385—394.
    [11]王芸,肖立新,陈志坚,等.电化学合成聚噻吩薄膜提高光伏电池的开路电压[J].光谱学与光谱分析,2011,31(1):7—11.
    [12]Wochnowski C,Metev S.UV-laser-assisted synthesis of iodine-doped electrical conductive polythiophene[J].Applied Surface Science,2002,186(1):34—39.
    [13]于伟利.电沉积制备聚噻吩有序微结构及有机太阳能电池[D].长春:吉林大学,2009.
    [14]李永霞.海底沉积物微生物燃料电池模型的建立及一株海洋细菌新种的分类鉴定[D].青岛:中国海洋大学,2011.
    [15]安丽华,尤瑞麟.一种用于DAPI染色的方法Steedman's wax包埋切片法[J].西北植物学报,2004,24(8):1367—1372.
    [16]王婷婷,邓天龙,廖梦霞.水生细菌计数方法研究进展及展望[J].世界科技研究与发展,2008,30(2):138—142.
    [17]Pletcher D.Organic electrochemistry:An introduction and a guide[J].Electrochimica Acta,1974,19(1):47—47.
    [18]严峻.聚噻吩衍生物的电化学合成及其应用研究[D].北京:中国科学院理化技术研究所,2009.
    [19]秦磊强.含π-共轭基元的电沉积薄膜的制备及应用研究[D].广州:华南理工大学,2016.
    [20]王红敏,唐国强,晋圣松,等.聚噻吩制备条件对其结构和导电性能的影响[J].化学学报,2007,65(21):2454—2458.
    [21]石家华.聚噻吩在离子液体中的电化学合成及表征[D].新乡:河南大学,2002.
    [22]刘晶晶,孙永明,孔晓英,等.微生物燃料电池中底物的研究进展[J].环境科学与技术,2011,34(6):104—108.
    [23]Ren L,Ahn Y,Hou H,et al.Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions[J].Journal of Power Sources,2014,257(257):454—460.
    [24]Nielsen M E,Wu D M,Girguis P R,et al.Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells.[J].Environmental Science&Technology,2015,43(22):8671—8677.
    [25]Raj V,Madheswari D,Ali M M.Chemical formation,characterization and properties of polycarbazole[J].Journal of Applied Polymer Science,2010,116(1):147—154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700