用户名: 密码: 验证码:
稳态磁场对真核生物细胞骨架的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of static magnetic fields on eukaryotic cytoskeleton
  • 作者:张磊 ; 李志元 ; 张欣
  • 英文作者:Lei Zhang;Zhiyuan Li;Xin Zhang;High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences;
  • 关键词:稳态磁场 ; 细胞骨架 ; 微管 ; 微丝 ; 抗磁各向异性 ; 有丝分裂纺锤体 ; 细胞分裂
  • 英文关键词:static magnetic field;;cytoskeleton;;microtubule;;microfilament;;diamagnetic anisotropy;;mitotic spindle;;cell division
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学院合肥物质科学研究院强磁场科学中心;
  • 出版日期:2019-01-23 16:44
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家自然科学基金(U1532151);; 中国科学院合肥物质科学研究院院长基金(YZJJ201704);; 合肥物质技术中心方向项目(2016FXCX004)资助
  • 语种:中文;
  • 页:KXTB201908003
  • 页数:13
  • CN:08
  • ISSN:11-1784/N
  • 分类号:14-26
摘要
细胞骨架是一种重要的细胞器,主要包括微管、微丝和中间纤维,在维持细胞形态、调控胞内物质运输、调节细胞分裂和细胞迁移等方面起着重要的作用,参与生殖发育和肿瘤发生等多个生理和病理过程,是细胞生物学以及肿瘤生物学领域的重要研究对象.从二十世纪七八十年代起,关于稳态磁场对真核生物细胞骨架影响的研究在理论解释和实验观测方面都取得了一系列进展.在理论解释方面,研究者不仅计算了肽键的微弱抗磁各向异性,而且进一步计算了微管多聚体较强的抗磁各向异性.在实验观测方面,研究者发现不仅体外纯化的微管或微丝能够沿着强磁场方向排列,并且细胞内由微管或微丝构成的相关结构也会受到稳态磁场的影响,例如纺锤体、精子和草履虫纤毛等.相比之下,磁场对中间纤维的影响研究较少.随着高场磁共振成像(magneticresonanceimaging,MRI)的研发与应用,以及稳态磁场在肿瘤治疗领域的潜在应用的逐步开发,进一步研究不同参数稳态磁场与体内细胞骨架之间的关系对研究和解释磁场对肿瘤发生和生殖发育等的影响至关重要.
        The cytoskeleton includes microtubules, actin filaments(also called microfilaments) and intermediate filaments, which play vital roles in maintaining cell morphology, intracellular transport and cell migration. They are involved in several physiological and pathological processes, such as the development and oncogenesis. Here in this review, we focus on summarizing the known effects of static magnetic fields on eukaryotic cytoskeleton, including microtubules, actin filaments and intermediate filaments. Since 1970 s and 1980 s, a series of progresses about the effects of static magnetic fields on eukaryotic cytoskeleton have been made both theoretically and experimentally. Theoretically, researchers have calculated the diamagnetic anisotropy of peptide bonds, which is relatively weak but could be amplified by highly ordered and organized structures, such as alpha helix and beta sheet in proteins. The diamagnetic anisotropy can be further amplified by highly ordered polymer structures such as microtubules. Experimentally, the orientation of purified microtubule and microfilament, as well as the cellular microtubule and microfilament changes that were induced by static magnetic fields has all been reported by multiple studies. For microtubules, it was shown that a 0.02 T static magnetic field was able to align the purified microtubule polymers in parallel with the magnetic field direction. The degree of purified microtubule polymer orientation changes is directly correlated with the magnetic field intensity. Moreover, there were also studies about the microtubule related cellular structures, such as mitotic spindles, sperm tails and Paramecium cilia. The mitotic spindle orientation of human nasopharyngeal carcinoma cell CNE-2 Z, human retinal pigment epithelial cell RPE1 and frog eggs could all be affected by high static magnetic fields in a magnetic field intensity dependent manner. However, the magnetic field-induced orientation changes in these cells are also determined by chromosome alignment as well as the spindle morphology. Moreover, the orientation and swimming behaviors of Paramecium were both affected by high static magnetic fields. For actin and actin polymers, it has been shown that 10 T static magnetic field could affect the self-assembly process of G-actin in vitro. Moreover, static magnetic fields of various intensities could also cause the microfilament distribution changes or actin alteration in some cells. For example, 80 mT static magnetic field increased the accumulation of actin and myosin and promoted the formation of large multinucleated myotubes. There were also a few studies about static magnetic fields and intermediate filaments, but the evidences are much less than that of microtubules or microfilaments. Overall, the progresses about magnetic field effects on human and animal cytoskeleton are promising but still at an initial stage. The direct effect of magnetic fields on cytoskeleton dynamics has not been investigated due to the microscopy technology limitations under magnetic conditions. More importantly, the organism complexity and the different magnetic field parameters(such as homogeneous or gradient magnetic fields, magnetic fields with different intensities, etc.) make the investigation complicated. It is very important to further explore the static magnetic fields of different parameters for their effects on various cytoskeleton, which will be critical to understand the static magnetic field effects on some physiological and pathological conditions, as well as to explore the potentials of static magnetic fields in applications such as cancer therapy.
引文
1 Vassilev P M,Dronzine R T,Vassileva M P,et al.Parallel arrays of microtubules formed in electric and magnetic-fields.Biosci Rep,1982,2:1025-1029
    2 Torbet J,Dickens M J.Orientation of skeletal-muscle actin in strong magnetic-fields.FEBS Lett,1984,173:403-406
    3 Wickstead B,Gull K.The evolution of the cytoskeleton.J Cell Biol,2011,194:513-525
    4 Fletcher D A,Mullins R D.Cell mechanics and the cytoskeleton.Nature,2010,463:485-492
    5 Brinkley B R.Microtubule organizing centers.Annu Rev Cell Biol,1985,1:145-172
    6 Mitchell D R.The evolution of eukaryotic cilia and flagella as motile and sensory organelles.Adv Exp Med Biol,2007,607:130-140
    7 Wittmann T,Hyman A,Desai A.The spindle:A dynamic assembly of microtubules and motors.Nat Cell Biol,2001,3:28-34
    8 Moritz M,Braunfeld M B,Guenebaut V,et al.Structure of the gamma-tubulin ring complex:A template for microtubule nucleation.Nat Cell Biol,2000,2:365-370
    9 Job D,Valiron O,Oakley B.Microtubule nucleation.Curr Opin Cell Biol,2003,15:111-117
    10 Jordan M A,Wilson L.Microtubules as a target for anticancer drugs.Nat Rev Cancer,2004,4:253-265
    11 Kirson E D,Gurvich Z,Schneiderman R,et al.Disruption of cancer cell replication by alternating electric fields.Cancer Res,2004,64:3288-3295
    12 Pless M,Weinberg U.Tumor treating fields:Concept,evidence and future.Expert Opin Investig Drugs,2011,20:1099-1106
    13 Davies A M,Weinberg U,Palti Y.Tumor treating fields:A new frontier in cancer therapy.Ann N Y Acad Sci,2013,1291:86-95
    14 Holmes K C,Popp D,Gebhard W,et al.Atomic model of the actin filament.Nature,1990,347:44-49
    15 Dominguez R,Holmes K C.Actin structure and function.Annu Rev Biophys,2011,40:169-186
    16 Eghiaian F,Rigato A,Scheuring S.Structural,mechanical,and dynamical variability of the actin cortex in living cells.Biophys J,2015,108:1330-1340
    17 Walcott S,Sun S X.A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells.Proc Natl Acad Sci USA,2010,107:7757-7762
    18 Fritz-Laylin L K,Lord S J,Mullins R D.Our evolving view of cell motility.Cell Cycle,2017,16:1735-1736
    19 Hayot C,Debeir O,Van Ham P,et al.Characterization of the activities of actin-affecting drugs on tumor cell migration.Toxicol Appl Pharmacol,2006,211:30-40
    20 Cooper J A.Effects of cytochalasin and phalloidin on actin.J Cell Biol,1987,105:1473-1478
    21 Snider N T,Omary M B.Post-translational modifications of intermediate filament proteins:Mechanisms and functions.Nat Rev Mol Cell Biol,2014,15:163-177
    22 Koster S,Weitz D A,Goldman R D,et al.Intermediate filament mechanics in vitro and in the cell:From coiled coils to filaments,fibers and networks.Curr Opin Cell Biol,2015,32:82-91
    23 Pauling L.The diamagnetic anisotropy of aromatic molecules.J Chem Phys,1936,4:673-677
    24 Lonsdale K.Diamagnetic anisotropy of organic molecules.Proc R Soc London,1939,171:541-568
    25 Pauling L.Diamagnetic anisotropy of the peptide group.Proc Natl Acad Sci USA,1979,76:2293-2294
    26 Bras W,Torbet J,Diakun G P,et al.The diamagnetic susceptibility of the tubulin dimer.J Biophys,2014:985082
    27 Mershin A,Kolomenski A A,Schuessler H A,et al.Tubulin dipole moment,dielectric constant and quantum behavior:Computer simulations,experimental results and suggestions.Biosystems,2004,77:73-85
    28 Worcester D L.Structural origins of diamagnetic anisotropy in proteins.Proc Natl Acad Sci USA,1978,75:5475-5477
    29 Valles J M.Model of magnetic field-induced mitotic apparatus reorientation in frog eggs.Biophys J,2002,82:1260-1265
    30 Bras W,Diakun G P,Diaz J F,et al.The susceptibility of pure tubulin to high magnetic fields:A magnetic birefringence and X-ray fiber diffraction study.Biophys J,1998,74:1509-1521
    31 Glade N,Tabony J.Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes.Biophys Chem,2005,115:29-35
    32 Liu Y,Guo Y,Valles J M Jr,et al.Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions.Proc Natl Acad Sci USA,2006,103:10654-10659
    33 Guo Y,Liu Y,Oldenbourg R,et al.Effects of osmotic force and torque on microtubule bundling and pattern formation.Phys Rev E Stat Nonlin Soft Matter Phys,2008,78:041910
    34 Wang D L,Wang X S,Xiao R,et al.Tubulin assembly is disordered in a hypogeomagnetic field.Biochem Bioph Res Co,2008,376:363-368
    35 Mayer T U,Kapoor T M,Haggarty S J,et al.Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.Science,1999,286:971-974
    36 Sawin K E,Leguellec K,Philippe M,et al.Mitotic spindle organization by a plus-end-directed microtubule motor.Nature,1992,359:540-543
    37 Denegre J M,Valles J M Jr,Lin K,et al.Cleavage planes in frog eggs are altered by strong magnetic fields.Proc Natl Acad Sci USA,1998,95:14729-14732
    38 Valles J M,Wasserman S R R M,Schweidenback C,et al.Processes that occur before second cleavage determine third cleavage orientation in Xenopus.Exp Cell Res,2002,274:112-118
    39 Zhang L,Hou Y B,Li Z Y,et al.27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells.Elife,2017,6:e22911
    40 Luo Y,Ji X M,Liu J J,et al.Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FUand Taxol.Bioelectrochemistry,2016,109:31-40
    41 Mo W C,Liu Y,Cooper H M,et al.Altered development of Xenopus embryos in a hypogeomagnetic field.Bioelectromagnetics,2012,33:238-246
    42 Suga D,Shinjo A,Kurnianto E,et al.Magnetic orientations of bull sperm separated into head and flagellum treated by DTT or heparin.Asian Austral J Anim,2000,13:167-175
    43 Emura R,Ashida N,Higashi T,et al.Orientation of bull sperms in static magnetic fields.Bioelectromagnetics,2001,22:60-65
    44 Emura R,Takeuchi T,Nakaoka Y,et al.Analysis of anisotropic diamagnetic susceptibility of a bull sperm.Bioelectromagnetics,2003,24:347-355
    45 Takeuchi T,Nakaoka Y,Emura R,et al.Diamagnetic orientation of bull sperms and related materials in static magnetic fields.J Phys Soc Jpn,2002,71:363-368
    46 Sakhnini L,Dairi M.Orientation of sea urchin sperms in static magnetic fields:Compared to human sperms.J Magn Magn Mater,2007,310:1035-1037
    47 Blake J R,Sleigh M A.Mechanics of ciliary locomotion.Biol Rev Camb Philos Soc,1974,49:85-125
    48 Rosen M S,Rosen A D.Magnetic-field influence on paramecium motility.Life Sci,1990,46:1509-1515
    49 Nakaoka Y,Takeda R,Shimizu K.Orientation of paramecium swimming in a DC magnetic field.Bioelectromagnetics,2002,23:607-613
    50 Guevorkian K,Valles J M Jr.Aligning Paramecium caudatum with static magnetic fields.Biophys J,2006,90:3004-3011
    51 Qian A R,Hu L F,Gao X,et al.Large gradient high magnetic field affects the association of MACF1 with actin and microtubule cytoskeleton.Bioelectromagnetics,2009,30:545-555
    52 Gioia L,Saponaro I,Bernabo N,et al.Chronic exposure to a 2 mT static magnetic field affects the morphology,the metabolism and the function of in vitro cultured swine granulosa cells.Electromagn Biol Med,2013,32:536-550
    53 Burley R W,Seidel J C,Gergely J.The stoichiometry of the reaction of the spin labeling of F-actin and the effect of orientation of spin-labeled F-actin filaments.Arch Biochem Biophys,1971,146:597-602
    54 Mo W C,Zhang Z J,Wang D L,et al.Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells.Sci Rep,2016,6:22624
    55 Gartzke J,Lange K.Cellular target of weak magnetic fields:Ionic conduction along actin filaments of microvilli.Am J Physiol Cell Physiol,2002,283:1333-1346
    56 Coletti D,Teodori L,Albertini M C,et al.Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment.Cytometry A,2007,71:846-856
    57 Dini L,Dwikat M,Panzarini E,et al.Morphofunctional study of 12-O-tetradecanoyl-13-phorbol acetate(TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic field.Bioelectromagnetics,2009,30:352-364
    58 Valiron O,Peris L,Rikken G,et al.Cellular disorders induced by high magnetic fields.J Magn Reson Imaging,2005,22:334-340
    59 Zhang J,Meng X,Ding C,et al.Regulation of osteoclast differentiation by static magnetic fields.Electromagn Biol Med,2017,36:8-19
    60 Eguchi Y,Ueno S.Stress fiber contributes to rat Schwann cell orientation under magnetic field.IEEE T Magn,2005,41:4146-4148
    61 Wosik J,Chen W,Qin K,et al.Magnetic field changes macrophage phenotype.Biophys J,2018,114:2001-2013
    62 Mueller C E,Birk R,Kramer B,et al.Influence of static magnetic fields on human myoblast/mesenchymal stem cell cocultures.Mol Med Rep,2018,17:3813-3820
    63 Birk R,Sommer U,Faber A,et al.Evaluation of the effect of static magnetic fields combined with human hepatocyte growth factor on human satellite cell cultures.Mol Med Rep,2014,9:2328-2334
    64 Nakai T.A study of the ultrastructural localization of hair keratin synthesis utilizing electron microscopic autoradiography in a magnetic field.J Cell Biol,1964,21:63-74
    65 Birk R,Sommer J U,Haas D,et al.Influence of static magnetic fields combined with human insulin-like growth factor 1 on human satellite cell cultures.In Vivo,2014,28:795-802
    66 Lim K,Hexiu J,Kim J,et al.Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells.Biomed Res Int,2013:296019
    67 Supino R,Bottone M G,Pellicciari C,et al.Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro.Histol Histopathol,2001,16:719-726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700