用户名: 密码: 验证码:
基于氨基与表面乙烯砜基反应动力学调控配基表面密度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups
  • 作者:程昉 ; 李明洋 ; 何炜 ; 王汉奇
  • 英文作者:CHENG Fang;LI Mingyang;HE Wei;WANG Hanqi;State Key Laboratory of Fine Chemicals, Dalian University of Technology;School of Pharmaceutical Science and Technology, Dalian University of Technology;School of Chemical Engineering, Dalian University of Technology;
  • 关键词:表面催化 ; 乙烯基砜 ; ab-NTA ; 密度控制 ; SPR ; 多价态
  • 英文关键词:Surface catalysis;;Vinyl sulfone;;ab-NTA;;Density control;;SPR;;Multivalent
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:大连理工大学精细化工国家重点实验室;大连理工大学制药科学与技术学院;大连理工大学化工学院;
  • 出版日期:2018-02-15
  • 出版单位:物理化学学报
  • 年:2018
  • 期:v.34
  • 基金:中央高校基本科研业务费(DUT16RC(3)019);; 青年千人计划资助项目~~
  • 语种:中文;
  • 页:WLHX201802010
  • 页数:8
  • CN:02
  • ISSN:11-1892/O6
  • 分类号:71-78
摘要
配基表面密度可控为定量研究生物分子相互作用提供了精准的分子基础。然而,经典混合自组装的方法控制配基密度对于不同自组装体系不具有普适性。本文报道了一种基于表面乙烯砜基反应动力学的配基表面密度调控方法。以Nα,Nα-二(羧甲基)-L-赖氨酸(ab-NTA)为生物配基模型,对该表面反应进行了催化剂筛选并利用X射线光电子能谱(XPS)和表面膜电位对该表面反应进行了表征。采用静态水接触角的方法对表面反应的动力学进行了定量表征,计算得到反应速率常数为0.0012 min~(-1)。采用表面等离子体共振(SPR)分析了该生物功能表面结合组氨酸标签蛋白(SA-6His)的能力,结果表明该表面比传统NHS-NTA表面具有更高的蛋白结合量和结合强度。通过控制反应时间和催化剂种类制备了四种配基密度不同的生物功能表面,并利用SPR对四种表面进行了蛋白质静态吸附实验。实验结果表明通过控制反应时间和催化剂类型均能够实现配基表面密度的调控,并且可以实现表面多价态的调控。
        Control over the ligand surface density provides an accurate molecular basis for the quantitative study of biomolecular interactions. However, the classic hybrid self-assembly method lacks general applicability toward different self-assembly systems. In this paper, we report a new method based on the reaction kinetics of vinyl sulfone groups presented on surface to control the surface ligand density. Nα,Nα-bis(carboxymethyl)-L-lysine(ab-NTA) was selected as the model biological ligand and the catalyst for surface reaction was screened. The surface reaction was characterized by X-ray photoelectron spectroscopy(XPS) and the surface membrane potential. Static water contact angle was used to quantify the kinetics of the surface reaction, and calculations showed that the rate constant was 0.0012 min~(-1). The ability of the biological functional surface to bind a histidine labeling protein(SA-6 His) was investigated by surface plasmon resonance(SPR). The results show that such a surface has a higher protein binding quantity and binding strength than the traditional NHS-NTA surface. Four biological functional surfaces with different ligand densities were prepared by controlling the reaction time and catalyst, and the protein static adsorption of these surfaces was analyzed by SPR. The results show that ligand density and multivalence of the biological functional surface can be controlled by modulating the reaction time and catalyst.
引文
(1)Yuan,P.X.;Deng,S.Y.;Yao,C.G.;Wan,Y.;Cosnier,S.;Shan,D.Biosens.Bioelectron.2017,89,319.doi:10.1016/j.bios.2016.07.031
    (2)Cabanas-Danes,J.;Rodrigues,E.D.J.Am.Chem.Soc.2014,136,12675.doi:10.1021/ja505695w
    (3)Nakamura,I.;Horikawa,Y.;Makino,A.;Sugiyama,J.;Kimura,S.Biomacromolecules 2011,12,785.doi:10.1021/bm101394j
    (4)Schartner,J.;Hoeck,N.Anal.Chem.2015,87,7467.doi:10.1021/acs.analchem.5b01823
    (5)Cheng,F.;Li,M.Y.;Wang,H.Q.;Lin,D.Q.;Qu,J.P.Langmuir2015,31,3422.doi:10.1021/la5044987
    (6)Rowley,J.A.;Mooney,D.J.J.Biomed.Mater.Res.2002,60,217.doi:10.1002/jbm.1287
    (7)Shoffstall,A.J.;Everhart,L.M.Biomacromolecules 2013,14,2790.doi:10.1021/bm400619v
    (8)Chen,X.W.;Pei,D.H.J.Comb.Chem.2009,11,604.doi:10.1021/cc9000168
    (9)Shao,Q.;Jiang,S.Y.J.Phys.Chem.B 2014,118,7630.doi:10.1021/jp5027114
    (10)Tomohiro,H.;Kenji,W.J.Phys.Chem.C 2009,113,18795.doi:10.1021/jp906494u
    (11)Subramanian,A.;Irudayaraj,J.;Ryan,T.Sensor.Actuat.B:Chem.2006,114,192.doi:10.1016/j.snb.2005.04.030
    (12)Ma,H.;Wells,M.;Beebe,T.P.Jr.;Chilkoti,A.Adv.Funct.Mater.2006,16,640.doi:10.1002/adfm.200500426
    (13)Bain,C.D.;Whitesides,G.M.J.Am.Chem.Soc.1988,110,6560.
    (14)Bohmler,J.;Ponche,A.;Anselme,K.;Ploux,L.ACS.Appl.Mater.Inter.2013,5,10478.doi:10.1021/am401976g
    (15)Tomohiro,F.;Yoshiko,M.Bioconjugate Chem.2010,21,1079.doi:10.1021/bc100053x
    (16)Liu,Y.T.;Yan,L.;Sun,L.M.;Li,H.Q.;Li,H.H.Chem.Eng.(China)2014,42,69.[刘玉婷,颜莉,孙立民,李慧琴,李海华.化学工程,2014,42,69.]doi:10.3969/j.issn.1005-9954.2014.03.014
    (17)Cheng,F.;Wang,H.Q.;Xu,K.;He,W.Acta Phys.-Chim.Sin.2017,33,426.[程昉,王汉奇,许旷,何炜.物理化学学报,2017,33,426.]doi:0.3866/PKU.WHXB201609291
    (18)Eugene W.L.;Chan,M.N.Y.J.Am.Chem.Soc.2006,128,15542.doi:10.1021/ja065828l
    (19)Zhang,S.;Maidenberg,Y.;Luo,K.;Koberstein,J.T.Langmuir 2014,30,6071.doi:10.1021/la501233w
    (20)Wang,H.Q.;Cheng,F.;Li,M.Y.;Peng,W.;Qu,J.P.Langmuir 2015,31,3413.doi:10.1021/la504087a
    (21)Esteves,A.P.;Silva,M.E.;Rodrigues,L.M.;Oliveira-Campos,A.M.F.;Hrdina,R.Tetrahedron Lett.2007,48,9040.doi:10.1016/j.tetlet.2007.10.077
    (22)Wang,C.;Qi,C.Z.Tetrahedron 2013,69,5348.doi:10.1016/j.tet.2013.04.123
    (23)Cassie,A.B.D.;Baxter,S.Trans.Faraday Soc.1944,40,546.
    (24)Kim,E.J.;Chung,B.H.;Lee,H.J.Anal.Chem.2012,84,10091.doi:10.1021/ac302584d
    (25)Maalouli,N.;Gouget-Laemmel,A.C.Langmuir 2011,27,5498.doi:10.1021/la2005437
    (26)Pei,J.;Tang,Y.;Xu,N.;Lu,W.;Xiao,S.J.;Liu,J.N.Sci.China Chem.2010,54,526.doi:10.1007/s11426-010-4128-3
    (27)Shin-ichiro,I.;Takashi,K.J.Electroanal.Chem.1997,428,33.doi:10.1016/S0022-0728(97)00006-5
    (28)Suman L.;Jacob,P.J.Am.Chem.Soc.2005,127,10205.doi:10.1021/ja050690c

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700