用户名: 密码: 验证码:
森林生态系统碳循环的基本概念和野外测定方法评述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fundamental concepts and field measurement methods of carbon cycling in forest ecosystems: a review
  • 作者:王兴昌 ; 王传宽
  • 英文作者:WANG Xingchang;WANG Chuankuan;Center for Ecological Research,Northeast Forestry University;
  • 关键词:碳循环 ; 碳通量 ; 碳储量 ; 测量方法 ; 净初级生产力 ; 净生态系统生产力 ; 净生态系统碳平衡
  • 英文关键词:carbon cycling;;carbon flux;;carbon storage;;measurement method;;net primary production;;net ecosystem production;;net ecosystem carbon balance
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学生态研究中心;
  • 出版日期:2015-01-27 16:49
  • 出版单位:生态学报
  • 年:2015
  • 期:v.35
  • 基金:国家“十二五”科技支撑项目(2011BAD37B01);; 教育部长江学者和创新团队发展计划(IRT1054)
  • 语种:中文;
  • 页:STXB201513001
  • 页数:16
  • CN:13
  • ISSN:11-2031/Q
  • 分类号:6-21
摘要
全球气候变化与森林生态系统碳循环息息相关,定量评估森林碳收支是生态系统与全球变化研究的重要任务。30年来森林生态系统碳循环研究已经取得了长足的进展,但全球和区域森林碳收支仍然存在很大的不确定性。这一方面与森林生态系统本身的复杂性有关,另一方面也与具体研究方法有关。评述了森林生态系统碳循环的基本概念和主要野外测定方法,为我国森林生态系统碳循环研究提供可参考的方法论。从生态系统碳浓度、密度、通量、分配和周转5个方面回顾了碳循环相关概念,指出碳浓度和碳储量是对碳库的静态描述,而碳通量和碳周转是对碳库的动态描述。净初级生产力是测量最普遍的碳通量组分,但大多数情况下因忽略了一些细节而被系统低估。普遍使用的净生态系统生产力,由于没有包含非CO2形式的水文、气象和干扰过程产生的碳通量,通常情况下高于生态系统净碳累积速率。在详细介绍碳通量组分的基础上,改进了森林生态系统碳循环的概念模型。重点讨论了碳通量的3种地面实测方法:测树学方法、箱法和涡度协方差法,并指出了其注意事项和不确定性来源。针对当前碳循环研究的突出问题,建议从4个方面减小碳循环测定的不确定性:(1)恰当运用生物量方程估算乔木生物量;(2)尽可能全面测定生态系统碳组分;(3)给出碳通量估算值的不确定性;(4)多种途径交互验证。
        Global climate change is closely linked with forest ecosystem carbon( C) cycling. Quantitative assessment of forest C budgets is of importance in ecosystem and global change sciences. Studies on forest ecosystem C cycling have been advanced considerably during the past 30 years,but there are still large uncertainties in the C budgets at both global and regional scales. These uncertainties can be attributed not only to the complexity of forest ecosystems but also to the methodology applied. In this paper,we reviewed the fundamental concepts and major field measurement methods of C cycling in forest ecosystems. First,we the concepts of concentration,density,flux,allocation and turnover. Carbon concentration and stock are static attributes of the C cycling,while C flux and turnover are dynamic ones. In meteorology,CO2 concentration can be expressed in three ways: mass / molar density,molar fraction to the moist air,and mass / molar fraction to the dry air,among which the dry molar fraction is the most convenient and conservative. In ecology,the C concentrations in biomass,necromass and soil are mostly expressed as mass fraction to the dry weight. Carbon density is defined as the C stock per unit forest area. Carbon flux is the mass flow per unit time through unit forest area( or particular organ of an individual tree). Carbon allocation pertains to standing biomass distribution,the absolute and relativepartitioning of gross primary production to C flux components. Net primary production,the most frequently investigated C flux,is often underestimated due to missing components. Net ecosystem production is often higher than the net C accumulation rate of the ecosystem. After clarifying the related concepts and terminologies,we modified the conceptual framework of forest C cycling. In the second part,we discussed field measurement methods of forest C cycling,focusing on principles,pros and cons,and potential uncertainties in measuring forest C fluxes with biometry( or inventory),chamber and eddy covariance methods. The biometry method is the most widely-used method for measuring forest C pools particularly for aboveground biomass,which requires little equipment or technology but long-term commitment,and lacks of fine temporal resolutions. The chamber method( e. g. ecophysiological approach) often focuses on specific ecological processes such as photosynthesis and respiration,which provides process-based parameters for forest C cycling modeling with fine temporal resolutions,but needs sophisticated expensive instrumentation and is difficult to up scale. The eddy covariance method directly measures C and water vapor between forest canopy and the atmosphere at ecosystem level. It provides continuous automated measurements with high frequency and reduces potential human errors,but it required expensive instrumentation and sophisticated data-processing and is limited by spatially-representative sampling locations. In the last part of this paper,we recommend four ways to reduce uncertainties in forest C accounting:(1) Appropriately use biomass allometric models to estimate tree biomass and its increment;(2) measure all C flux components in the forest ecosystem,or at least report the missing components;(3) estimate the uncertainty of C fluxes rather than only report the mean value of estimation; and(4) cross-validate the C fluxes with independent methods.
引文
[1]Jobbágy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications,2000,10(2):423-436.
    [2]Pan Y D,Birdsey R A,Fang J,Houghton R,Kauppi P E,Kurz W A,Phillips O L,Shvidenko A,Lewis S L,Canadell J G,Ciais P,Jackson R B,Pacala S W,Mc Guire A D,Piao S L,Rautiainen A,Sitch S,Hayes D.A large and persistent carbon sink in the world's forests.Science,2011,333(6045):988-993.
    [3]Ruesch A,Gibbs H K.New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000.Oak Ridge National Laboratory,Oak Ridge,Tennessee:Carbon Dioxide Information Analysis Center,2008.
    [4]Beer C,Reichstein M,Tomelleri E,Ciais P,Jung M,Carvalhais N,Rdenbeck C,Arain M A,Baldocchi D,Bonan G B,Bondeau A,Cescatti A,Lasslop G,Lindroth A,Lomas M,Luyssaert S,Margolis H,Oleson K W,Roupsard O,Veenendaal E,Viovy N,Williams C,Woodward F I,Papale D.Terrestrial gross carbon dioxide uptake:global distribution and covariation with climate.Science,2010,329(5993):834-838.
    [5]Le QuéréC,Andres R J,Boden T,Conway T,Houghton R A,House J I,Marland G,Peters G P,van der Werf G R,Ahlstrm A,Andrew R M,Bopp L,Canadell J G,Ciais P,Doney S C,Enright C,Friedlingstein P,Huntingford C,Jain A K,Jourdain C,Kato E,Keeling R F,Klein Goldewijk K,Levis S,Levy P,Lomas M,Poulter B,Raupach M R,Schwinger J,Sitch S,Stocker B D,Viovy N,Zaehle S,Zeng N.The global carbon budget 1959-2011.Earth System Science Data,2013,5:165-185.
    [6]Canadell J G,Le QuéréC,Raupach M R,Field C B,Buitenhuis E T,Ciais P,Conway T J,Gillett N P,Houghton R,Marland G.Contributions to accelerating atmospheric CO2growth from economic activity,carbon intensity,and efficiency of natural sinks.Proceedings of the National Academy of Sciences of the United States of America,2007,104(47):18866-18870.
    [7]Luyssaert S,Inglima I,Jung M,Richardson A D,Reichstein M,Papale D,Piao S L,Schulze E D,Wingate L,Matteucci G,Aragao L,Aubinet M,Beer C,Bernhofer C,Black K G,Bonal D,Bonnefond J M,Chambers J,Ciais P,Cook B,Davis K J,Dolman A J,Gielen B,Goulden M,Grace J,Granier A,Grelle A,Griffis T,Grünwald T,Guidolotti G,Hanson P J,Harding R,Hollinger D Y,Hutyra L R,Kolari P,Kruijt B,Kutsch W,Lagergren F,Laurila T,Law B E,Le Maire G,Lindroth A,Loustau D,Malhi Y,Mateus J,Migliavacca M,Misson L,Montagnani L,Moncrieff J,Moors E,Munger J W,Nikinmaa E,Ollinger SV,Pita G,Rebmann C,Roupsard O,Saigusa N,Sanz M J,Seufert G,Sierra C,Smith M L,Tang J,Valentini R,Vesala T,Janssens I A.CO2balance of boreal,temperate,and tropical forests derived from a global database.Global Change Biology,2007,13(12):2509-2537.
    [8]方精云,柯金虎,唐志尧,陈安平.生物生产力的“4P”概念、估算及其相互关系.植物生态学报,2001,25(4):414-419.
    [9]于贵瑞,王秋凤,朱先进.区域尺度陆地生态系统碳收支评估方法及其不确定性.地理科学进展,2011,30(1):103-113.
    [10]赵德华,李建龙,齐家国,范亚民.陆地生态系统碳平衡主要研究方法评述.生态学报,2006,26(8):2655-2662.
    [11]Aubinet M,Vesala T,Papale D.Eddy Covariance:A Practical Guide to Measurement and Data Analysis.2nd ed.Berlin:Springer,2012.
    [12]Burba G.Eddy Covariance Method for Scientific,Industrial,Agricultural and Regulatory Applications:A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates.Lincoln,Nebraska:LI-COR Biosciences,2013.
    [13]Kowalski A,Serrano-Ortiz P.On the relationship between the eddy covariance,the turbulent flux,and surface exchange for a trace gas such as CO2.Boundary-Layer Meteorology,2007,124(2):129-141.
    [14]Gu L H,Massman W J,Leuning R,Pallardy S G,Meyers T,Hanson P J,Riggs J S,Hosman K P,Yang B.The fundamental equation of eddy covariance and its application in flux measurements.Agricultural and Forest Meteorology,2012,152:135-148.
    [15]王静,王兴昌,王传宽.基于不同浓度变量的温带落叶阔叶林CO2储存通量的误差分析.应用生态学报,2013,24(4):975-982.
    [16]Thomas S C,Martin A R.Carbon content of tree tissues:a synthesis.Forests,2012,3(2):332-352.
    [17]杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报,2005,25(11):2875-2882.
    [18]Hoch G,Richter A,Krner C.Non-structural carbon compounds in temperate forest trees.Plant,Cell&Environment,2003,26(7):1067-1081.
    [19]张海燕,王传宽,王兴昌.温带12个树种新老树枝非结构性碳水化合物浓度比较.生态学报,2013,33(18):5675-5685.
    [20]张全智,王传宽.6种温带森林碳密度与碳分配.中国科学:生命科学,2010,40(7):621-631.
    [21]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522.
    [22]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析.应用生态学报,2003,14(5):797-802.
    [23]王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):533-544.
    [24]Litton C M,Raich J W,Ryan M G.Carbon allocation in forest ecosystems.Global Change Biology,2007,13(10):2089-2109.
    [25]Chapin F S,Matson P A,Mooney H A.Principles of Terrestrial Ecosystem Ecology.New York:Springer,2002.
    [26]Chapin F S,Woodwell G,Randerson J T,Rastetter E B,Lovett G,Baldocchi D D,Clark D,Harmon M E,Schimel D S,Valentini R,Wirth C,Aber J D,Cole J J,Goulden M L,Harden J W,Heimann M,Howarth R W,Matson P A,Mc Guire A D,Melillo J M,Mooney H A,Neff J C,Houghton R A,Pace M L,Ryan M G,Running S W,Sala O E,Schlesinger W H,Schulze E D.Reconciling carbon-cycle concepts,terminology,and methods.Ecosystems,2006,9(7):1041-1050.
    [27]Kuzyakov Y.Sources of CO2efflux from soil and review of partitioning methods.Soil Biology and Biochemistry,2006,38(3):425-448.
    [28]孙忠林,王传宽.森林生态系统可溶性碳和颗粒碳通量.生态学报,2014,34(15):4133-4141.
    [29]Baldocchi D D.Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past,present and future.Global Change Biology,2003,9(4):479-492.
    [30]王兴昌,王传宽,于贵瑞.基于全球涡度相关的森林碳交换的时空格局.中国科学D辑:地球科学,2008,38(9):1092-1108.
    [31]Lorenz K,Lal R.Carbon Sequestration in Forest Ecosystems.New York:Springer,2010.
    [32]Lal R.Carbon sequestration.Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1492):815-830.
    [33]Poorter H,Niklas K J,Reich P B,Oleksyn J,Poot P,Mommer L.Biomass allocation to leaves,stems and roots:meta-analyses of interspecific variation and environmental control.New Phytologist,2012,193(1):30-50.
    [34]Mokany K,Raison R,Prokushkin A S.Critical analysis of root:shoot ratios in terrestrial biomes.Global Change Biology,2006,12(1):84-96.
    [35]Chen G S,Yang Y S,Robinson D.Allocation of gross primary production in forest ecosystems:allometric constraints and environmental responses.New Phytologist,2013,200(4):1176-1186.
    [36]Gill R A,Jackson R B.Global patterns of root turnover for terrestrial ecosystems.New Phytologist,2000,147(1):13-31.
    [37]Brunner I,Bakker M R,Bjrk R G,Hirano Y,Lukac M,Aranda X,Brja I,Eldhuset T D,Helmisaari H S,Jourdan C,Konpka B,López B C,Miguel Pérez C,Persson H,Ostonen I.Fine-root turnover rates of European forests revisited:an analysis of data from sequential coring and ingrowth cores.Plant and Soil,2013,362(1/2):357-372.
    [38]Stockmann U,Adams M A,Crawford J W,Field D J,Henakaarchchi N,Jenkins M,Minasny B,Mc Bratney A B,de Remy de Courcelles V,Singh K,Wheelera I,Abbottb L,Angersc D A,Baldockd J,Birde M,Brookesf P C,Chenug C,Jastrowh J D,Lali R,Lehmannj J,O'Donnellk A G,Partonl W J,Whiteheadm D,Zimmermannn M.The knowns,known unknowns and unknowns of sequestration of soil organic carbon.Agriculture,Ecosystems&Environment,2013,164:80-99.
    [39]Gaudinski J B,Trumbore S E,Davidson E A,Zheng S H.Soil carbon cycling in a temperate forest:radiocarbon-based estimates of residence times,sequestration rates and partitioning of fluxes.Biogeochemistry,2000,51(1):33-69.
    [40]罗云建,张小全,王效科,朱建华,侯振宏,张治军.森林生物量的估算方法及其研究进展.林业科学,2009,45(8):129-134.
    [41]谢亭亭,李根,周光益,吴仲民,赵厚本,邱治军,梁瑞友.南岭小坑小红栲-荷木群落的地上生物量.应用生态学报,2013,24(9):2399-2407.
    [42]Saatchi S S,Harris N L,Brown S,Lefsky M,Mitchard E T,Salas W,Zutta B R,Buermann W,Lewis S L,Hagen S,Petrova S,White L,Silman M,Morel A.Benchmark map of forest carbon stocks in tropical regions across three continents.Proceedings of the National Academy of Sciences of the United States of America,2011,108(24):9899-9904.
    [43]Gower S T,Kucharik C J,Norman J M.Direct and indirect estimation of leaf area index,fAPAR,and net primary production of terrestrial ecosystems.Remote Sensing of Environment,1999,70(1):29-51.
    [44]Hoover C M.Field Measurements for Forest Carbon Monitoring.Netherlands:Springer,2008.
    [45]Keller M,Palace M,Hurtt G.Biomass estimation in the Tapajos National Forest,Brazil:examination of sampling and allometric uncertainties.Forest Ecology and Management,2001,154(3):371-382.
    [46]Chave J,Condit R,Aguilar S,Hernandez A,Lao S,Perez R.Error propagation and scaling for tropical forest biomass estimates.Philosophical Transactions of the Royal Society of London.Series B:Biological Sciences,2004,359(1443):409-420.
    [47]Ketterings Q M,Coe R,van Noordwijk M,Ambagau Y,Palm C A.Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests.Forest Ecology and Management,2001,146(1/3):199-209.
    [48]曾伟生,唐守正.国外立木生物量模型研究现状与展望.世界林业研究,2010,23(4):30-35.
    [49]Wang C K.Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests.Forest Ecology and Management,2006,222(1/3):9-16.
    [50]Butt N,Slade E,Thompson J,Malhi Y,Riutta T.Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates.Ecological Applications,2013,23(4):936-943.
    [51]马钦彦,陈遐林,王娟,蔺琛,康峰峰,曹文强,马志波,李文宇.华北主要森林类型建群种的含碳率分析.北京林业大学学报,2002,24(5/6):96-100.
    [52]Zhang Q Z,Wang C K,Wang X C,Quan X K.Carbon concentration variability of 10 Chinese temperate tree species.Forest Ecology and Management,2009,258(5):722-727.
    [53]Harmon M E,Franklin J F,Swanson F J,Sollins P,Gregory S,Lattin J,Anderson N,Cline S,Aumen N,Sedell J,Lienkaemper G,Kermit Cromack J,Cummins K.Ecology of coarse woody debris in temperate ecosystems.Advances in Ecological Research,1986,15:133-302.
    [54]闫恩荣,王希华,黄建军.森林粗死木质残体的概念及其分类.生态学报,2005,25(1):158-167.
    [55]Woldendorp G,Keenan R J,Barry S,Spencer R D.Analysis of sampling methods for coarse woody debris.Forest Ecology and Management,2004,198(1/3):133-148.
    [56]Williams M S,Gove J H.Perpendicular distance sampling:an alternative method for sampling downed coarse woody debris.Canadian Journal of Forest Research,2003,33(8):1564-1579.
    [57]Harmon M E,Fasth B,Woodall C W,Sexton J.Carbon concentration of standing and downed woody detritus:Effects of tree taxa,decay class,position,and tissue type.Forest Ecology and Management,2013,291:259-267.
    [58]Yang Y H,Mohammat A,Feng J M,Zhou R,Fang Y.Storage,patterns and environmental controls of soil organic carbon in China.Biogeochemistry,2007,84(2):131-141.
    [59]Pribyl D W.A critical review of the conventional SOC to SOM conversion factor.Geoderma,2010,156(3/4):75-83.
    [60]Law B E,Ryan M G,Anthoni P M.Seasonal and annual respiration of a ponderosa pine ecosystem.Global Change Biology,1999,5(2):169-182.
    [61]Lavigne M B,Ryan M G,Anderson D E,Baldocchi D D,Crill P M,Fitzjarrald D R,Goulden M L,Gower S T,Massheder J M,Mc Caughey J H,Rayment M,Striegl R G.Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites.Journal of Geophysical Research,1997,102(D24):28977-28985.
    [62]Davidson E A,Savage K,Verchot L V,Navarro R.Minimizing artifacts and biases in chamber-based measurements of soil respiration.Agricultural and Forest Meteorology,2002,113(1/4):21-37.
    [63]Xu M,De Biase TA,Qi Y,Goldstein A,Liu Z G.Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains,California.Tree Physiology,2001,21(5):309-318.
    [64]袁凤辉,关德新,吴家兵,王安志,金昌杰.箱式气体交换观测系统及其在植物生态系统气体交换研究中的应用.应用生态学报,2009,20(6):1495-1504.
    [65]Running S W,Nemani R R,Heinsch F A,Zhao M S,Reeves M,Hashimoto H.A continuous satellite-derived measure of global terrestrial primary production.Bio Science,2004,54(6):547-560.
    [66]Ciais P,Rayner P,Chevallier F,Bousquet P,Logan M,Peylin P,Ramonet M.Atmospheric inversions for estimating CO2fluxes:methods and perspectives.Climatic Change,2010,103(1/2):69-92.
    [67]Cramer W,Bondeau A,Woodward F I,Prentice I C,Betts R A,Brovkin V,Cox P M,Fisher V,Foley J A,Friend A D,Kucharik C,Lomas M R,Ramankutty N,Sitch S,Smith B,White A,Young-Molling C.Global response of terrestrial ecosystem structure and function to CO2and climate change:results from six dynamic global vegetation models.Global Change Biology,2001,7(4):357-373.
    [68]Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X H,Ahlstrm A,Anav A,Canadell J G,Cong N,Huntingford C,Jung M,Levis S,Levy P E,Li J S,Lin X,Lomas M R,Lu M,Luo Y Q,Ma Y C,Myneni R B,Poulter B,Sun Z Z,Wang T,Viovy N,Zaehle S,Zeng N.Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2trends.Global Change Biology,2013,19(7):2117-2132.
    [69]Clark D A,Brown S,Kicklighter D W,Chambers J Q,Thomlinson J R,Ni J.Measuring net primary production in forests:concepts and field methods.Ecological Applications,2001,11(2):356-370.
    [70]Gower S T,Krankina O,Olson R J,Apps M,Linder S,Wang C.Net primary production and carbon allocation patterns of boreal forest ecosystems.Ecological Applications,2001,11(5):1395-1411.
    [71]Ohtsuka T,Akiyama T,Hashimoto Y,Inatomi M,Sakai T,Jia S G,Mo W H,Tsuda S,Koizumi H.Biometric based estimates of net primary production(NPP)in a cool-temperate deciduous forest stand beneath a flux tower.Agricultural and Forest Meteorology,2005,134(1/4):27-38.
    [72]Hicke J A,Allen C D,Desai A R,Dietze M C,Hall R J,Hogg E H,Kashian D M,Moore D,Raffa K F,Sturrock R N,Vogelmann J.Effects of biotic disturbances on forest carbon cycling in the United States and Canada.Global Change Biology,2012,18(1):7-34.
    [73]王晓伟,姬兰柱,王绪高,安琳莉,燕丽波.森林冠层食叶昆虫取食水平的定量方法与研究进展.生态学杂志,2011,30(7):1403-1410.
    [74]Spirig C,Neftel A,Ammann C,Dommen J,Grabmer W,Thielmann A,Schaub A,Beauchamp J,Wisthaler A,Hansel A.Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry.Atmospheric Chemistry and Physics,2005,5(2):465-481.
    [75]Karl T,Guenther A,Spirig C,Hansel A,Fall R.Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan.Geophysical Research Letters,2003,30(23),doi:10.1029/2003GL018432.
    [76]Fahey T,Siccama T,Driscoll C,Likens G E,Campbell J,Johnson C E,Battles J J,Aber J D,Cole J J,Fisk M C,Groffman P M,Hamburg S P,Holmes R T,Schwarz P A,Yanai R D.The biogeochemistry of carbon at Hubbard Brook.Biogeochemistry,2005,75(1):109-176.
    [77]Osawa A,Aizawa R.A new approach to estimate fine root production,mortality,and decomposition using litter bag experiments and soil core techniques.Plant and Soil,2012,355(1/2):167-181.
    [78]Vogt K A,Vogt D J,Bloomfield J.Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level.Plant and Soil,1998,200(1):71-89.
    [79]Strand A E,Pritchard S G,Mc Cormack M L,Davis M A,Oren R.Irreconcilable differences:fine-root life spans and soil carbon persistence.Science,2008,319(5862):456-458.
    [80]Guo D L,Li H B,Mitchell R J,Han W X,Hendricks J J,Fahey T J,Hendrick R L.Fine root heterogeneity by branch order:exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods.New Phytologist,2008,177(2):443-456.
    [81]Hendricks J J,Hendrick R L,Wilson C A,Mitchell R J,Pecot S D,Guo D L.Assessing the patterns and controls of fine root dynamics:an empirical test and methodological review.Journal of Ecology,2006,94(1):40-57.
    [82]全先奎,于水强,史建伟,于立忠,王政权.微根管法和同位素法在细根寿命研究中的应用及比较.生态学杂志,2007,26(3):428-434.
    [83]Li X F,Zhu J,Lange H,Han S J.A modified ingrowth core method for measuring fine root production,mortality and decomposition in forests.Tree Physiology,2013,33(1):18-25.
    [84]Nadelhoffer K J,Raich J W.Fine root production estimates and belowground carbon allocation in forest ecosystems.Ecology,1992,73(4):1139-1147.
    [85]Aber J D,Melillo J M,Nadelhoffer K J,Mc Claugherty C A,Pastor J.Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability:a comparison of two methods.Oecologia,1985,66(3):317-321.
    [86]Johnson M G,Tingey D T,Phillips D L,Storm M J.Advancing fine root research with minirhizotrons.Environmental and Experimental Botany,2001,45(3):263-289.
    [87]Scurlock J,Johnson K,Olson R.Estimating net primary productivity from grassland biomass dynamics measurements.Global Change Biology,2002,8(8):736-753.
    [88]Yang Y H,Li P,Ding J Z,Zhao X,Ma W H,Ji C J,Fang J Y.Increased topsoil carbon stock across China's forests.Global Change Biology,2014,20(8):2687-2696.
    [89]Schrumpf M,Schulze E D,Kaiser K,Schumacher J.How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?.Biogeosciences,2011,8(5):1193-1212.
    [90]Yang Y H,Luo Y Q,Finzi A C.Carbon and nitrogen dynamics during forest stand development:a global synthesis.New Phytologist,2011,190(4):977-989.
    [91]Chatterjee A,Lal R,Wielopolski L,Martin M Z,Ebinger M.Evaluation of different soil carbon determination methods.Critical Reviews in Plant Sciences,2009,28(3):164-178.
    [92]Wielopolski L,Chatterjee A,Mitra S,Lal R.In situ determination of soil carbon pool by inelastic neutron scattering:Comparison with dry combustion.Geoderma,2011,160(3/4):394-399.
    [93]Flexas J,Díaz-Espejo A,Berry J,Cifre J,Galmes J,Kaldenhoff R,Medrano H,Ribas-CarbóM.Analysis of leakage in IRGA's leaf chambers of open gas exchange systems:quantification and its effects in photosynthesis parameterization.Journal of Experimental Botany,2007,58(6):1533-1543.
    [94]Rodeghiero M,Niinemets,Cescatti A.Major diffusion leaks of clamp-on leaf cuvettes still unaccounted:how erroneous are the estimates of Farquhar et al.model parameters?.Plant,Cell&Environment,2007,30(8):1006-1022.
    [95]Wang Y P,Leuning R.A two-leaf model for canopy conductance,photosynthesis and partitioning of available energy I:Model description and comparison with a multi-layered model.Agricultural and Forest Meteorology,1998,91(1/2):89-111.
    [96]Ceschia,Damesin C,Lebaube S,Pontailler J Y,Dufrêne.Spatial and seasonal variations in stem respiration of beech trees(Fagus sylvatica).Annals of Forest Science,2002,59(8):801-812.
    [97]Damesin C,Ceschia E,Le Goff N,Ottorini J M,Dufrêne E.Stem and branch respiration of beech:from tree measurements to estimations at the stand level.New Phytologist,2002,153(1):159-172.
    [98]Lavigne M B,Franklin S E,Hunt E R Jr.Estimating stem maintenance respiration rates of dissimilar balsam fir stands.Tree Physiology,1996,16(8):687-695.
    [99]Davidson E,Belk E,Boone R D.Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest.Global Change Biology,1998,4(2):217-227.
    [100]Wang C K,Han Y,Chen J Q,Wang X C,Zhang Q Z,Bond-Lamberty B.Seasonality of soil CO2efflux in a temperate forest:Biophysical effects of snowpack and spring freeze-thaw cycles.Agricultural and Forest Meteorology,2013,177:83-92.
    [101]Trumbore S.Carbon respired by terrestrial ecosystems-recent progress and challenges.Global Change Biology,2006,12(2):141-153.
    [102]Hanson P J,Edwards N T,Garten C T,Andrews J A.Separating root and soil microbial contributions to soil respiration:a review of methods and observations.Biogeochemistry,2000,48(1):115-146.
    [103]Subke J A,Inglima I,Cotrufo M F.Trends and methodological impacts in soil CO2efflux partitioning:a metaanalytical review.Global Change Biology,2006,12(6):921-943.
    [104]Ngao J,Longdoz B,Granier A,Epron D.Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content.Plant and Soil,2007,301(1/2):99-110.
    [105]常建国,刘世荣,史作民,陈宝玉,朱学凌.北亚热带-南暖温带过渡区典型森林生态系统土壤呼吸及其组分分离.生态学报,2007,27(5):1791-1802.
    [106]Lee X H,Massman W,Law B E.Handbook of Micrometeorology:A Guide for Surface Flux Measurement and Analysis.New York:Springer,2004.
    [107]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006.
    [108]Rotach M W,Wohlfahrt G,Hansel A,Reif M,Wagner J,Gohm A.The world is not flat:Implications for the global carbon balance.Bulletin of the American Meteorological Society,2014,95(7):1021-1028.
    [109]Burba G G,Mc Dermitt D K,Grelle A,Anderson D J,Xu L K.Addressing the influence of instrument surface heat exchange on the measurements of CO2flux from open-path gas analyzers.Global Change Biology,2008,14(8):1854-1876.
    [110]Mauder M,Cuntz M,Drüe C,Graf A,Rebmann C,Schmid H P,Schmidt M,Steinbrecher R.A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements.Agricultural and Forest Meteorology,2013,169:122-135.
    [111]Barr A G,Richardson A D,Hollinger D Y,Papale D,Arain M A,Black T A,Bohrer G,Dragoni D,Fischer M L,Gu L,Law B E,Margolis H A,Mc Caughey J H,Munger J W,Oechel W,Schaeffer K.Use of change-point detection for friction-velocity threshold evaluation in eddycovariance studies.Agricultural and Forest Meteorology,2013,171-172:31-45.
    [112]Goulden M L,Munger J W,Fan S M,Daube B C,Wofsy S C.Measurements of carbon sequestration by long-term eddy covariance:methods and a critical evaluation of accuracy.Global Change Biology,1996,2(3):169-182.
    [113]van Gorsel E,Delpierre N,Leuning R,Black A,Munger J W,Wofsy S,Aubinet M,Feigenwinter C,Beringer J,Bonal D,Chen B Z,Chen J Q,Clement R,Davis K J,Desai A R,Dragoni D,Etzold S,Grünwald T,Gu L H,Heinesch B,Hutyra L R,Jans W W P,Kutsch W,Law B E,Leclerc M Y,Mammarella I,Montagnani L,Noormets A,Rebmann C,Wharton S.Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2.Agricultural and Forest Meteorology,2009,149(11):1919-1930.
    [114]Moffat A M,Papale D,Reichstein M,Hollinger D Y,Richardson A D,Barr A G,Beckstein C,Braswell B H,Churkina G,Desai A R,Falge E,Gove J H,Heimann M,Hui D F,Jarvis A J,Kattge J,Noormets A,Stauch V J.Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes.Agricultural and Forest Meteorology,2007,147(3):209-232.
    [115]Falge E,Baldocchi D,Olson R,Anthoni P,Aubinet M,Bernhofer C,Burba G,Ceulemans R,Clement R,Dolman H,Granier A,Gross P,Grünwald T,Hollinger D,Jensen N O,Katul G,Keronen P,Kowalski A,Lai C T,Law B E,Meyers T,Moncrieff J,Moors E,Munger J W,Pilegaard K,Rannik,Rebmann C,Suyker A,Tenhunen J,Tu K,Verma S,Vesala T.Gap filling strategies for defensible annual sums of net ecosystem exchange.Agricultural and Forest Meteorology,2001,107(1):43-69.
    [116]Reichstein M,Falge E,Baldocchi D,Papale D,Aubinet M,Berbigier P,Bernhofer C,Buchmann N,Gilmanov T,Granier A,Grünwald T,HavránkováK,Ilvesniemi H,Janous D,Knohl A,Laurila T,Lohila A,Loustau D,Matteucci G,Meyers T,Miglietta F,Ourcival J M,Pumpanen J,Rambal S,Rotenberg E,Sanz M,Tenhunen J,Seufert G,Vaccari F,Vesala T,Yakir D,Valentini R.On the separation of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm.Global Change Biology,2005,11(9):1424-1439.
    [117]Lasslop G,Reichstein M,Papale D,Richardson A D,Arneth A,Barr A,Stoy P,Wohlfahrt G.Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach:critical issues and global evaluation.Global Change Biology,2010,16(1):187-208.
    [118]Richardson A D,Braswell B H,Hollinger D Y,Burman P,Davidson E A,Evans R S,Flanagan L B,Munger J W,Savage K,Urbanski S P,Wofsy S C.Comparing simple respiration models for eddy flux and dynamic chamber data.Agricultural and Forest Meteorology,2006,141(2/4):219-234.
    [119]叶子飘.光合作用对光和CO2响应模型的研究进展.植物生态学报,2010,34(6):727-740.
    [120]Papale D,Reichstein M,Aubinet M,Canfora E,Bernhofer C,Kutsch W,Longdoz B,Rambal S,Valentini R,Vesala T,Yakir D.Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique:algorithms and uncertainty estimation.Biogeosciences,2006,3:571-583.
    [121]Elbers J A,Jacobs C M J,Kruijt B,Jans W W P,Moors E J.Assessing the uncertainty of estimated annual totals of net ecosystem productivity:A practical approach applied to a mid latitude temperate pine forest.Agricultural and Forest Meteorology,2011,151(12):1823-1830.
    [122]刘敏,何洪林,于贵瑞,孙晓敏,朱旭东,张黎,赵新全,王辉民,石培礼,韩士杰.数据处理方法不确定性对CO2通量组分估算的影响.应用生态学报,2010,21(9):2389-2396.
    [123]Twine T E,Kustas W P,Norman J M,Cook D R,Houser P R,Meyers T P,Prueger J H,Starks P J,Wesely M L.Correcting eddy-covariance flux underestimates over a grassland.Agricultural and Forest Meteorology,2000,103(3):279-300.
    [124]Barr A G,Morgenstern K,Black T A,Mc Caughey J H,Nesic Z.Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2flux.Agricultural and Forest Meteorology,2006,140(1/4):322-337.
    [125]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999.
    [126]于贵瑞,王秋凤,刘迎春,刘颖慧.区域尺度陆地生态系统固碳速率和增汇潜力概念框架及其定量认证科学基础.地理科学进展,2011,30(7):771-787.
    [127]Goulden M L,Mc Millan A M S,Winston G C,Rocha A V,Manies K L,Harden J W,Bond-Lamberty B P.Patterns of NPP,GPP,respiration,and NEP during boreal forest succession.Global Change Biology,2011,17(2):855-871.
    [128]Curtis P S,Hanson P J,Bolstad P,Barford C,Randolph J C,Schmid H P,Wilson K B.Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests.Agricultural and Forest Meteorology,2002,113(1/4):3-19.
    [129]Piao S L,Fang J Y,Ciais P,Peylin P,Huang Y,Sitch S,Wang T.The carbon balance of terrestrial ecosystems in China.Nature,2009,458(7241):1009-1013.
    [130]Yu G R,Zhu X J,Fu Y L,He H L,Wang Q F,Wen X F,Li X R,Zhang L M,Zhang L,Su W,Li S G,Sun X M,Zhang X P,Zhang J H,Yan J H,Wang H M,Zhou G S,Jia B R,Xiang W H,Li Y N,Zhao L,Wang Y F,Shi P L,Chen S P,Xin X P,Zhao F H,Wang Y Y,Tong C L.Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.Global Change Biology,2013,19(3):798-810.
    [131]Wang M,Guan D X,Han S J,Wu J L.Comparison of eddy covariance and chamber-based methods for measuring CO2flux in a temperate mixed forest.Tree Physiology,2010,30(1):149-163.
    [132]Tan Z H,Zhang Y P,Yu G R,Sha L Q,Tang J W,Deng X B,Song Q H.Carbon balance of a primary tropical seasonal rain forest.Journal of Geophysical Research,2010,115(D4):D00H26,doi:10.1029/2009JD012913.
    [133]Tan Z H,Zhang Y P,Schaefer D,Yu G R,Liang N S,Song Q H.An old-growth subtropical Asian evergreen forest as a large carbon sink.Atmospheric Environment,2011,45(8):1548-1554.
    [134]Xu B,Yang Y,Li P,Shen H,Fang J.Global patterns of ecosystem carbon flux in forests:A biometric data‐based synthesis.Global Biogeochemical Cycles,2014,28(9):962-973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700