用户名: 密码: 验证码:
基于碳稳定同位素的滨岸草地生态系统土壤有机碳贡献研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Using Stable Carbon Isotope to Study Contribution Rate of Soil Organic Carbon in A Riparian Grassland Ecosystem
  • 作者:吴健 ; 黄沈发 ; 肖绍赜 ; 吴建强 ; 唐浩 ; 沙晨燕 ; 王敏
  • 英文作者:WU Jian;HUANG Shen-fa;XIAO Shao-ze;WU Jian-qiang;TANG Hao;SHA Chen-yan;WANG Min;Shanghai Institute of Environmental Science;Ecology and Environmental Sciences College of East China Normal University;
  • 关键词:滨岸生态系统 ; C3/C4草本植物 ; 土壤有机碳 ; 碳稳定同位素
  • 英文关键词:riparian ecosystem;;C3/C4 herbaceous plants;;soil organic carbon;;stable carbon isotope
  • 中文刊名:CJLY
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:上海市环境科学研究院;华东师范大学生态与环境科学学院;
  • 出版日期:2018-07-15
  • 出版单位:长江流域资源与环境
  • 年:2018
  • 期:v.27
  • 基金:环保青年基金项目(沪环科2011-1);; 国家自然科学基金(51679141)
  • 语种:中文;
  • 页:CJLY201807018
  • 页数:9
  • CN:07
  • ISSN:42-1320/X
  • 分类号:174-182
摘要
通过测定4种长三角地区常见的滨岸草本植物(百慕大、白花三叶草、高羊茅与白茅)所在样地中不同形态的土壤碳库含量及土壤有机碳稳定同位素丰度来探索该区域土壤碳库及碳稳定同位素分布特征,并利用稳定同位素混合模型,研究滨岸草地生态系统对土壤碳库的贡献。结果表明:(1)土壤中总碳、有机碳、溶解性有机碳含量随着深度的增加而逐渐降低。总碳、有机碳、溶解性有机碳在4种植物样带的表层土壤中,平均含量分别为22.11、11.44、53.95 mg·kg~(-1);而深层土壤中则仅为15.57、7.07、19.47 mg·kg~(-1),远低于表层土壤中的含量。且土壤总碳、有机碳及溶解性有机碳两两之间存在极显著的正线性相关;(2)土壤有机碳稳定同位素在垂直方向上表现出C_3植物δ~(13)C值随深度增大而增大、C_4植物δ~(13)C值随深度增大而减小两种特征。两类植物的平均土壤有机稳定碳同位素δ~(13)C值分别由表层土壤中的-25.24‰、-22.33‰变化为深层土壤中的-24.35‰、-23.27‰;(3)借助稳定同位素混合模型计算后发现:不同植物对土壤有机碳的贡献率及有机碳累积速率完全不同。其中百慕大贡献率为12.19%、累积速率为62.79 g·m~(-2)·a~(-1);白花三叶草贡献率14.34%、累积速率为75.34 g·m~(-2)·a~(-1);高羊茅贡献率为35.95%、累积速率为181.84 g·m~(-2)·a~(-1);白茅贡献率为18.51%、累积速率为97.70 g·m-2·a-1。
        Soil carbon pool and abundlance of organic carbon stable isotopes were investigated at the Yangtze River Delta region across which the coastal herbaceous plants( Cynodon dactylon,Trifolium repens,Festuca arundinacea and Imperata cylindrica) occupy commonly,and this pool was quantified with Stable Isotope Mixing Model as the contribution of coastal grassland ecosystem. The results of this study show:( 1) the average contents of total carbon,organic carbon and dissolved organic carbon correlate significantly with each other and decrease with increasing soil depth from 22. 11 g·kg~(-1),11. 44 g·kg~(-1),and 53. 95 mg·kg~(-1) to 15. 57 g·kg~(-1),7. 07 g·kg~(-1),and 19. 47 mg·kg~(-1),respectively.(2) On the contrary,while the δ13 C values of C_3 plants increased with the depth increasing in the vertical direction,the δ~(13) C values of C_4 plants decreased with the depth. From upper layer to deeper layer,the average δ~(13) C value of two types of plants change from-25. 24‰,-22. 33‰ to-24. 35‰,-23. 27‰;( 3) The stable isotope mixture model found the contribution rate of different plants to soil organic carbon and the organic carbon accumulation rate was completely different among those four plants.The contribution rate of Cynodon dactylon,Trifolium repens,Festuca arundinacea,and Imperata cylindrical is12. 19%,14. 34%,35. 95% and 18. 51% with the cumulative rate of 62. 79 g· m~(-2)·a~(-1),75. 34 g·m~(-2)·a~(-1),181. 84 g·m~(-2)·a~(-1),and 97. 70 g·m~(-2)·a~(-1),respectively.
引文
[1]贾宇平.土壤碳库分布与储量研究进展[J].太原师范学院学报(自然科学版),2004,3(4):62-64.JIA Y P.Study Advance in the distribution and storage of soil carbon[J].Journal of Taiyuan Teachers College(natural science edition),2004,3(4):62-64.
    [2]THORNTON P E,LAMARQUE J F,NAN A R,et al.Influence of carbon-nitrogen cycle coupling on land model response to CO2fertilization and climate variability[J].Global Biogeochemical Cycles,2007,21(4):405-412.
    [3]XU L,SCHLOSSER C A,KICKLIGHTER D W,et al.Exploring the Terrestrial Ecosystem Response to Extreme Weather Events using Multiple Land Surface Models[C]//AGU Fall Meeting.AGU Fall Meeting Abstracts,2012:139-160.
    [4]万昊,刘卫国,魏杰.黄土高原植被演替对土壤碳库及δ13C的影响[J].生态学杂志,2015,34(1):100-105.WAN H,LIU W G,WEI J.Effects of vegetation succession on carbon stock andδ13C in loess plateau[J].Chinese Journal of Ecology,2015,34(1):100-105.
    [5]WARREN D R,KEETON W S,KIFFNEYP M,et al.Changing forests-changing streams:riparian forest stand development and ecosystem function in temperate headwaters[J].Ecosphere,2016,7(8).
    [6]TANAKA M O,FERNANDES J D F,SUGA C M,et al.Abrupt change of a stream ecosystem function along a sugarcaneforest transition:Integrating riparian and in-stream characteristics[J].Agriculture Ecosystems&Environment,2015,207:171-177.
    [7]王国雨,慈维顺.湿地资源功能及我国湿地现状[J].天津农林科技,2012(3):36-38.WANG G Y,CI W S.The function of wetland resources and the present situation of wetland in China[J].Science and technology of Tianjin Agriculture and Forestry,2012(3):36-38.
    [8]徐守国,郭辉军,田昆.湿地功能研究进展[J].环境与可持续发展,2006,19(5):12-14.XU S G,GUO H J,TIAN K.Progress in research on wetland function[J].Environment and sustainable Development,2006,19(5):12-14.
    [9]袁军,吕宪国.湿地功能评价研究进展[J].湿地科学,2004,2(2):153-160.YUAN J,LV X G.Progress in Research of Functional Assessment of Wetlands[J].Wetland Science,2004,2(2):153-160.
    [10]BUHAY W M,TIMSIC S,BLAIR D,et al.Riparian influences on carbon isotopic composition of tree rings in the Slave River Delta,Northwest Territories,Canada[J].Chemical Geology,2008,252(1-2):9-20.
    [11]SCOTT R L,EDWARDS E A,SHUTTLEWORTH W J,et al.Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem[J].Agricultural&Forest Meteorology,2004,122(1):65-84.
    [12]许文强,陈曦,罗格平,等.基于稳定同位素技术的土壤碳循环研究进展[J].干旱区地理(汉文版),2014,37(5):980-987.XU W Q,CHEN X,LUO G P,et al.Progress of research on soil carbon cycle using carbon isotope approach[J].Arid land Geography,2014,37(5):980-987.
    [13]LIU W G,FENG X H,NING Y F,et al.δ13C variation of C3and C4plants across an Asian monsoon rainfall gradient in arid northwestern China[J].Global Change Biology,2005,11:1094-1100.
    [14]WANG G,FENG X,HAN J,et al.Paleovegetation reconstruction usingδ13C of soil organic matter[J].Biogeosciences,2008,5:1325-1337.
    [15]吴健,王敏,吴建强,等.滨岸缓冲带植物群落优化配置试验研究[J].生态与农村环境学报,2008,24(4):42-45.WU J,WANG M,WU J Q,et al.Optimization of plants community of riparian buffer zone[J].Journal of Ecology and Rural Environment,2008,24(4):42-45.
    [16]ZHU S F,LIU C Q,TAO F X,et al.Geochemical characteristics of stable carbon isotopes in soil organic matter from Karst areas[J].Earth&Environment,2006,34(3):51-58.
    [17]李阳阳,王琴,崔琳琳,杨石岭.不同分析方法对黄土有机碳同位素分析的影响[J].地球环境学报,2012,3(04):936-941.LI Y Y,WANG Q,CUI L L,YANG S L.Differences inδ13C values of bulck organic matter from chinese loess obtained using two analytic methods[J].Journal of Earth Environment,2012,3(04):936-941.
    [18]BERGER T W,NEUBAUER C,GLATZEL G.Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce(Picea abies)and mixed species stands in Austria[J].Forest Ecology&Management,2002,159(1):3-14.
    [19]BOLIN B,DEGENS E T,KEMPE S,et al.The global carbon cycle[J].American Scientist,1978,241(4874):35-38.
    [20]DAVIDSON E A,TRUMBORE S E,AMUNDSON R.Soil warming and organic carbon content[J].Nature,2000,408(6814):789-90.
    [21]BOUTTON T W,ARCHER S R,MIDWOOD A J,et al.δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J].Geoderma,1998,82(1-3):5-41.
    [22]KRAIMER R A,MONGER H C.Carbon isotopic subsets of soil carbonate-a particle size comparison of limestone and igneous parent materials[J].Geoderma,2009,150(1-2):1-9.
    [23]ZHANG Y,DING W,LUO J,et al.Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4plant Spartina alterniflora[J].Soil Biology&Biochemistry,2010,42(10):1712-1720.
    [24]BERNOUX M,CERRI C C,NEILL C,et al.The use of stable carbon isotopes for estimating soil organic matter turnover rates[J].Geoderma,1998,82(1-3):43-58.
    [25]BALESDENT J,MARIOTTI A,BOUTTON T W,et al.Measurement of soil organic matter turnover using13C natural abundance[M].Mass spectrometry of soils.1996:83-111.
    [26]奚小环,杨忠芳,崔玉军,等.东北平原土壤有机碳分布与变化趋势研究[J].地学前缘,2010,17(3):213-221.XI X H,YANG Z F,CUI Y J,et al..A study of soil carbon distribution and change in Northeast Plain[J].Earth Science Frontiers(China University of Geosciences(Beijing);Peking University),2010,17(3):213-221.
    [27]戴慧敏,刘驰,宫传东,等.东北平原土壤碳库构成及其与土壤性质的关系[J].第四纪研究,2013,33(5):986-994.DAI H M,LIU C,GONG C D,et al.Soil carbon pool in northeast plain of china and its relations between the soil properties[J].Quaternary Sciences,2013,33(5):986-994.
    [28]季志平,苏印泉,贺亮,等.秦岭北坡几种人工林根系及土壤有机碳剖面分布特征的研究[J].西北植物学报,2006,26(10):2155-2158.JI Z P,SU Y Q,HE L,et al.Root system and organic carbon distribution in soil profiles of several plantations of northern slope of qinling mountains[J].Acta Botanical Boreal Li-Occident Sinica,2006,26(10):2155-2158.
    [29]蔡晓布,张永青,邵伟.不同退化程度高寒草原土壤肥力变化特征[J].生态学报,2008,45(3):1110-1118.CAI X B,ZHANG Y Q,SHAO W.Characteristic of soil fertility in a pine steppes at different degradation grades[J].Acta Ecology Sinica,2008,45(3):1110-1118.
    [30]俞元春,李淑芬.江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J].土壤,2003,35(5):424-428.YU YC,LI S F.Correlations between dissolved organic carbon(doc)and some other factors of forest soils in xiashu,Jiangsu[J].Soils,2003,35(5):424-428.
    [31]林滨,陶澍,曹军,等.伊春河流域土壤与沉积物中水溶性有机物的含量与吸着系数[J].中国环境科学,1996(4):307-310.LIN B,TAO S,CAO J,et al.Contents and sorption coefficients of soluble organic compounds in soils and sediment from yichun river catchment[J].China Environmental Science,1996(4):307-310.
    [32]李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江农林大学学报,2003,20(2):119-123.LI SF,YU YC,HE S.Correlation between dissolved organic carbon and soil factors of the forest soil in southern of china[J].Journal of Zhejiang Forestry College,2003,20(2):119-123.
    [33]孙宝伟,杨晓东,张志浩,等.浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系[J].植物生态学报,2013,37(9):803-810.SUN B W,YANG X D,ZHANG Z H,et al.Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in tiantong region[J],Zhejiang province,eastern china[J].Chinese Journal of Plant Ecology,2013,37(9):803-810.
    [34]朱书法,刘丛强,陶发祥,等.喀斯特地区土壤有机质的稳定碳同位素地球化学特征[J].地球与环境,2006,34(3):51-58.ZHU S F,LIU C Q,TAO F X,et al.Geochemical characteristics of stable carbon isotopes in soil organic matter from karst areas[J].Earth and Environment,2006,34(3):51-58.
    [35]刘涛泽.西南喀斯特典型坡地土壤有机碳库特征及碳同位素组成[D].西北植物学报,2009.LIU T Z.Characteristics of soil organic carbon pool and carbon isotope composition of typical sloping fields in southwest karst[D],Acta Botanica Borea Li-Occidentalia Sinica,2009.
    [36]易现峰.海北高寒草甸土壤有机碳同位素组成及C3/C4碳源的变化[J].西北植物学报,2005,25(2):336-342.YI X F.Stable carbon isotopic composition in soil organic carbon and c3/c4 source variations at the haibei alpine meadow[J].Acta Botanica Borea Li-Occidentalia Sinica,2005,25(2):336-342.
    [37]PESSENDA L C R.Holocene vegetation and climate changes in Brazil using carbon isotopes of soil organic matter and lacustrine sediment pollen analysis[J].Laguna,2004.
    [38]马剑英,陈发虎,夏敦胜,等.塔里木盆地荒漠植物与表土碳同位素组成研究[J].冰川冻土,2007,29(1):144-148.MA JY,CHEN F H,XIA D S,et al.Stable carbon isotope compositions of desert plant and surface soil in the tarim basin[J].Journal of Glaciology and Geocryology,2007,29(1):144-148.
    [39]姜启吴,欧志吉,左平.盐沼植被对江苏盐城湿地生态系统有机质贡献的初步研究[J].海洋通报,2012,31(5):547-551.JIANG Q W,OU Z J,ZUO P,Primary study on the organic matter contribution of salt marsh vegetation to coastal wetland ecosystem in yancheng Jiangsu[J].Marine Science Bulletin,2012,31(5):547-551.
    [41]易现峰.海北高寒草甸土壤有机碳同位素组成及C3/C4碳源的变化[J].西北植物学报,2005,25(2):336-342.YI X F.Stable carbon isotopic composition in soil organic carbon and c3/c4 source variations at the haibei alpine meadow[J].Acta Botanica Borea Li-Occidentalia Sinica,2005,25(2):336-342.
    [42]李龙波.黄土高原不同植被覆盖下土壤有机碳的分布特征及其同位素组成研究[J].地球与环境,2011,39(4):441-449.LI L B.Distribution charactristics of soil organic carbon and its isotopic composition for soil profiles of loess planteau under different vegetation conditions[J].Earth and Environment,2011,39(4):441-449.
    [43]丁喜桂,叶思源,王吉松.黄河三角洲湿地土壤、植物碳氮稳定同位素的组成特征[J].海洋地质前沿,2011(2):66-71.DING X G,YE S Y,WANG J S.Stable carbon and nitrogen isotopes in the yellow river delta wetland[J].Marine Geology Frontiers,2011(2):66-71.
    [44]赵先丽,周广胜,周莉,等.盘锦芦苇湿地土壤微生物特征分析[J].气象与环境学报,2006,(04):64-67.ZHAO X L,ZHOU G S,ZHOU L,et al.The characteristics of soil microbe in panjin reed wetland[J].Journal of Meterology and Environment,2006,(04):64-67.
    [45]杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志,2008,27(1):38-42.YANG J S,LIU J S,SUN L N.Effect of temperature and soil moisture on wetland soil organic carbon mineralization[J].Chinese Journal of Ecology,2008,27(1):38-42.
    [46]ZHAO G,LIU J,WANG Y,et al.Response of soil microbe quantity and active carbon in wetland to CO2elevation during growth phase[C].//Beijing:Science Press Beijing,2009.
    [47]张骞,姜俊彦,李秀珍,等.潮滩湿地植被发育年限对土壤有机碳含量及积累速率的影响[J].生态学杂志,2017,36(5):1173-1179.ZHANG W,JIANG J Y,LI X Z,et al.Impacts of vegetation establishment duration on soil carbon accumulation in Chongming-dongtan,china.[J].Chinese Journal of Ecology,2017,36(5):1173-1179.
    [48]PEREZ-MATEOS.M.Soil biochemistry volume 6:Edited by J M Bollag and G Stotzky.pp 584.Marcel Dekker,New York.1990.$150 ISBN 0-8247-8232-1[J].Biochemical Education,1990,18(4):215-215.
    [49]马正锐,程积民,侯庆春,等.六盘山华北落叶松和油松林典型林地生长及固碳速率研究[J].西北林学院学报,2014,29(1):8-14.MA Z R,CHEN J M,HOU Q C,et al.Growth rhythms and carbon sequestration rates of larix principis-rupprechtii and pinus tabulae formis forests in liupan mountains[J].Journal of Northwest Forestry University,2014,29(1):8-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700