用户名: 密码: 验证码:
珊瑚礁岩土材料的物理力学性能研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review of the Physical and Mechanical Properties of Coral Reef
  • 作者:旷杜敏 ; 龙志林 ; 周益春 ; 任辉启 ; 王明洋 ; 吴祥云 ; 闫超萍 ; 陈佳敏
  • 英文作者:KUANG Du-min;LONG Zhi-lin;ZHOU Yi-chun;REN Hui-qi;WANG Ming-yang;WU Xiang-yun;YAN Chao-ping;CHEN Jia-min;College of Civil Engineering and Mechanics,Xiangtan University;College of Materials Science and Engineering,Xiangtan University;National Defense Engineering Institute,Academy of Military Science of PLA;State Key Laboratory of Disaster Prevention & Mitigation of Explosion &Impact,PLA University of Science and Technology;
  • 关键词:珊瑚礁 ; 力学性质 ; 礁灰岩 ; 钙质砂
  • 英文关键词:coral reef;;mechanical properties;;reef limestone;;calcareous sand
  • 中文刊名:XYDZ
  • 英文刊名:Natural Science Journal of Xiangtan University
  • 机构:湘潭大学土木工程与力学学院;湘潭大学材料科学与工程学院;军事科学院国防工程研究院;陆军工程大学爆炸冲击防灾减灾国家重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:湘潭大学自然科学学报
  • 年:2018
  • 期:v.40;No.148
  • 基金:国家自然科学基金项目(51471139)
  • 语种:中文;
  • 页:XYDZ201805017
  • 页数:19
  • CN:05
  • ISSN:43-1066/N
  • 分类号:112-130
摘要
为了更深入地了解珊瑚礁灰岩和钙质砂的物理和力学特性,该文通过总结近年来的相关文献,对珊瑚礁的形成机理及其分布区域,珊瑚礁灰岩和钙质砂两种典型珊瑚礁岩土材料的物理力学特性做出了详细的阐述;着重论述了钙质砂的压缩特性、剪切特性、破碎特性、动力特性、钙质砂混凝土和桩基工程特性及钙质砂数学物理模型几个方面的研究进展.分析表明:钙质砂具有丰富内孔隙、胶结、颗粒破碎三个重要的结构特征,其静力学和动力学特性与其结构特性密切相关;颗粒破碎对钙质砂的变形和强度特性存在十分显著的影响,尤其表现在高应力水平条件下;已有的数学物理模型多关注其胶结和颗粒破碎特性,但难以定量地从微观层面描述钙质砂力学特性的演化;如何通过宏微观表征相结合的方法,建立起钙质砂微观特性和宏观特性之间的关联,并以此为基础构建数学物理模型,进而为发展珊瑚礁岩土力学理论和模型提供了新的研究视角.
        In order to have a more profound understand of the physical and mechanical properties of coral reef limestone and calcareous sand,the formation mechanism of coral reefs and their distribution areas as well as the physical and mechanical properties of two typical coral reef rock and soil materials,i.e.,coral reef limestone and calcareous sand were reviewed in details based on the relevant literature in recent years,particularly for the research progresses on the compressive properties,shear properties,crushing properties,dynamic properties,concrete engineering,pile foundation engineering and mathematical physical model of calcareous sands.The result shows that:Calcareous sand has three important structural characteristics of high void ratio,cementation and particle breakage,its static and dynamic characteristics are closely related to structural characteristics;Particle crushing has a very significant influence on the deformation and strength characteristics of calcareous sand,especially in the condition of high stress levels;The existing mathematical physical models pay more attention to characteristics of cementation and particle breakage,but these models are difficult to quantitatively describe the evolution of mechanical properties from the microscopic level;How to establish a mathematical physical model based on the combination of macro and micro characterization and the relationship between the microcosmic and macro characteristics of calcareous sand,and to provide a new perspective for the development of the theory and model of the coral reef rock and soil mechanics.
引文
[1]余克服,张光学,汪稔.南海珊瑚礁:从全球变化到油气勘探——第三届地球系统科学大会专题评述[J].地球科学进展,2014,29(11):1287-1293.
    [2]李捷,方祥位,张伟,等.珊瑚砂工程处理研究进展[J].水利与建筑工程学报,2017,15(2):43-48.
    [3]袁征,余克服,王英辉,等.珊瑚礁岩土的工程地质特性研究进展[J].热带地理,2016,36(1):87-93.
    [4]唐国艺,郑建国.东南亚礁灰岩的工程特性[J].工程勘察,2015,43(6):6-10.
    [5]刘志伟,李灿,胡昕.珊瑚礁礁灰岩工程特性测试研究[J].工程勘察,2012,40(9):17-21.
    [6]王新志,汪稔,孟庆山,等.南沙群岛珊瑚礁礁灰岩力学特性研究[J].岩石力学与工程学报,2008,27(11):2221-2226.
    [7]钱琨,王新志,陈剑文,等.南海岛礁吹填钙质砂渗透特性试验研究[J].岩土力学,2017,38(6):1557-1564.
    [8]姜松,李建双.珊瑚砂物理力学性质调研及试验研究[J].中国港湾建设,2017,37(7):31-34.
    [9]汪轶群,洪义,国振,等.南海钙质砂宏细观破碎力学特性[J].岩土力学,2018,39(1):199-206.
    [10]王帅,雷学文,孟庆山,等.侧限条件下高压对钙质砂颗粒破碎影响研究[J].建筑科学,2017,33(5):80-87.
    [11]张小燕,蔡燕燕,王振波,等.珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析[J].岩土力学,2018,39(5):1-8.
    [12]谭风雷,闫振国,曾志军,等.珊瑚砂填料压缩特性试验研究[J].公路交通科技(应用技术版),2018,14(1):137-139.
    [13] HONGBING Y U,SUN Z.Physical and mechanical properties of coral sand in the Nansha Islands[J].Marine Science Bulletin,2006,8(2):31-39.
    [14]纪文栋,张宇亭,裴文斌,等.加载方式和应力水平对珊瑚砂颗粒破碎影响的试验研究[J].岩石力学与工程学报,2018,37(8):1953-1961.
    [15] SHAHZNZARI H,REZVANI R.Effective parameters for the particle breakage of calcareous sands:an experimental study[J].Engineering Geology,2013,159(9):98-105.
    [16] WANG X Z,WANG X,JIN Z C,et al.Investigation of engineering characteristics of calcareous soils from fringing reef[J].Ocean Engineering,2017,134:77-86.
    [17] DEHNAVI Y,SHAHNAZARI H,SALEHZADEH H,et al.Compressibility and undrained behavior of Hormuz Calcareous Sand[J].Electronic Journal of Geotechnical Engineering,2010,15:1684-1702.
    [18]刘崇权.钙质土土力学理论及其工程应用[J].岩石力学与工程学报,1999,18(5):616-616.
    [19]汪轶群.钙质砂宏细观力学特性试验及离散元模拟[D].杭州:浙江大学,2016.
    [20]张家铭.钙质砂基本力学性质及颗粒破碎影响研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2004.
    [21]刘汉龙,胡鼎,肖杨,等.钙质砂动力液化特性的试验研究[J].防灾减灾工程学报,2015,35(6):707-711.
    [22]徐学勇,汪稔,王新志,等.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学,2012,33(10):402-414.
    [23]傅秀梅,王长云,邵长伦,等.中国珊瑚礁资源状况及其药用研究调查Ⅰ.珊瑚礁资源与生态功能[J].中国海洋大学学报(自然科学版),2009,39(4):676-684.
    [24]王瑞,余克服,王英辉,等.珊瑚礁的成岩作用[J].地球科学进展,2017,32(3):221-233.
    [25]赵焕庭,王丽荣.珊瑚礁形成机制研究综述[J].热带地理,2016,36(1):1-9.
    [26]翁贻令.钙质土的抗剪强度及其影响机制研究[D].南宁:广西大学,2017.
    [27] ACHITUV Y,DUBINSKY Z.Evolution and zoogeography of coral reefs[M].Ecosystems of the world 25,2008:1.
    [28] SMITH S V.Coral-reef area and the contributions of reefs to processes and resources of the world’s oceans[J].Nature,1978,273(5659):225-226.
    [29]刘崇权,杨志强,汪稔.钙质土力学研究现状与进展[J].岩土力学,1995,16(4):74-84.
    [30]马林.钙质土的剪切特性试验研究[J].岩土力学,2016(s1):309-316.
    [31]汪进超,王川婴.珊瑚礁岩体完整性评价方法[J].岩土力学,2014(10):2934-2940.
    [32]蒋明镜,吴迪,曹培,等.基于SEM图片的钙质砂连通孔隙分析[J].岩土工程学报,2017,39(s1):1-5.
    [33] ZHU C Q,WANG X Z,WANG R,et al.Experimental microscopic study of inner pores of calcareous sand[J].Materials Research Innovations,2014,18(S2):207-214.
    [34] ZHU C Q,CHEN H Y,MENG Q S,et al.Microscopic characterization of intra-pore structures of calcareous sands[J].Rock&Soil Mechanics,2014,35(7):1831-1836.
    [35]李莎,毛茂,徐升.马尔代夫礁灰岩物理力学特性研究[J].武汉勘察设计,2017(6):54-57.
    [36]刘志伟,李灿,胡昕.珊瑚礁礁灰岩工程特性测试研究[J].工程勘察,2012,40(9):17-21.
    [37]杨永康,丁学武,冯春燕,等.西沙群岛珊瑚礁灰岩物理力学特性试验研究[J].广州大学学报(自然科学版),2016,15(5):78-83.
    [38]刘志伟,杨生彬,程东幸,等.沙特拉比格2×660 MW燃油电站珊瑚礁地基工程勘察与实践[J].土工基础,2017,31(5):588-590.
    [39]张更生.珊瑚礁岩含水率对疏浚施工挖掘力学指标的影响[J].水运工程,2017(1):191-194.
    [40] HYODO M,ARAMAKI N,ITOH M,et al.Cyclic strength and deformation of crushable carbonate sand[J].Soil Dynamics&Earthquake Engineering,1996,15(5):331-336.
    [41]荀涛,胡鹏,梅弢,等.西沙群岛珊瑚砂运动特性试验研究[J].水道港口,2009,30(4):277-281.
    [42] AGHAJANI H F,SALEHZADEH H.Anisotropic behavior of the Bushehr carbonate sand in the Persian Gulf[J].Arabian Journal of Geosciences,2015,8(10):8197-8217.
    [43] PHAM H H G,IMPE P V,IMPE W V,et al.Effects of particle characteristics on shear strength of calcareous sand[J].Acta Geotechnica Slovenica,2017,14(2):11-15.
    [44] MORIOKA B,NICHOLSON P.Evaluation of the Liquefaction Potential of Calcareous Sand[C]//2000.
    [45] HASSANLOURAD M,SALEHZADEH H,SHAHNAZARI H.Undrained triaxial shear behavior of grouted carbonate sands[J].International Journal of Civil Engineering,2011,9(4):307-314.
    [46] SHAHNAZARI H,REZVANI R,TUTUNCHIAN M.The effects of dissipated energy on mechanical behavior of carbonate sands using monotonic triaxial tests[J].Japanese Geotechnical Society Special Publication,2016,2(9):397-400.
    [47] SHAHNAZARI H,TUTUNCHIAN M A,REZVANI R,et al.Evolutionary-based approaches for determining the deviatoric stress of calcareous sands[J].Computers&Geosciences,2013,50(1):84-94.
    [48]蒋礼.南海钙质砂破碎力学特性研究[D].成都:成都理工大学,2014.
    [49]钱炜.某岛礁珊瑚砂力学性质的室内试验研究[J].土工基础,2016(4):527-532.
    [50]佘殷鹏,吕亚茹,李峰,等.珊瑚砂剪切特性试验分析[J].解放军理工大学自然科学版,2017,18(1):29-35.
    [51]钱春杰,李忠平,谭风雷,等.珊瑚砂填料强度特征试验研究[J].公路交通科技(应用技术版),2018,14(1):133-136.
    [52]胡波.三轴条件下钙质砂颗粒破碎力学性质与本构模型研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [53] SHARMA S S,ISMAIL M A.Monotonic and cyclic behavior of two calcareous soils of different origins[J].Journal of Geotechnical&Geoenvironmental Engineering,2006,132(12):1581-1591.
    [54] ISLAM M K,CARTER J P,AIREY D W.Comparison of the yield locus and stress-dilatancy function of some critical state constitutive models with experimental data for carbonate sand[J].Journal of the Institution of Engineers Chemical Engineering Division,2004,84(4):267-274.
    [55]HARDIN B O.Crushing of soil particles[J].Journal of Geotechnical Engineering,1985,111(10):1177-1192.
    [56]秦月,姚婷,汪稔,等.基于颗粒破碎的钙质沉积物高压固结变形分析[J].岩土力学,2014,35(11):3123-3128.
    [57]陈清运,孙吉主,汪稔.钙质砂声发射特征的三轴试验研究[J].岩土力学,2009,30(7):2027-2030.
    [58]张家铭,蒋国盛,汪稔.颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J].岩土力学,2009,30(07):2043-2048.
    [59]张家铭,张凌,刘慧,等.钙质砂剪切特性试验研究[J].岩石力学与工程学报,2008(S1):3010-3015.
    [60]张家铭,张凌,蒋国盛,等.剪切作用下钙质砂颗粒破碎试验研究[J].岩土力学,2008,29(10):2789-2793.
    [61] GUO L,ZHAN W,ZHANG F,et al.The influence of earthquakes on Zhubi Reef in the Nansha Islands of the South China Sea[J].Acta Oceanologica Sinica,2017,36(3):99-108.
    [62] GIANG P H H,IMPE P O V,IMPE W F V,et al.Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation[J].Soil Dynamics&Earthquake Engineering,2017,100:371-379.
    [63] TANG J,CHENG H,ZHANG Q,et al.Development of properties and microstructure of concrete with coral reef sand under sulphate attack and drying-wetting cycles[J].Construction&Building Materials,2018,165:647-654.
    [64] ZHU C Q,LIU H F,WANG X,et al.Engineering geotechnical investigation for coral reef site of the crosssea bridge between Maléand Airport Island[J].Ocean Engineering,2017,146:298-310.
    [65] KARGAR S H R,SHAHNAZARI H,SALEHZADEH H.Post-cyclic behavior of carbonate sand with anisotropic consolidation[J].International Journal of Civil Engineering,2014,12(4B):316-325.
    [66] LPEZ-QUEROL S,COOP M R.Drained cyclic behaviour of loose Dogs Bay sand[J].Géotechnique,2012,62(4):281-289.
    [67] MORRISON M J,MCINTYRE P D,SAULS D P.Laboratory test results for carbonate soils from offshore Africa[C]//Proceeding,International conference on calcareous sediments,Perth,1988:109-118.
    [68] DATTA M,RAO G V,GULHATI S K.Development of pore water pressures in a dense calcareous sand under repeated compressive stress cycles[C]//International Symposium on Soils under Cyclic and Transient Loading.1980:33-37.
    [69]刘汉龙,胡鼎,肖杨,等.钙质砂动力液化特性的试验研究[J].防灾减灾工程学报,2015,35(6):707-711.
    [70] DONOHUE S,O’SULLIVAN C,LONG M.Particle breakage during cyclic triaxial loading of a carbonate sand[J].Géotechnique,2016,59(5):477-482.
    [71] QADIMI A,COOP M R.The undrained cyclic behaviour of a carbonate sand[J].Géotechnique,2007,57(9):739-750.
    [72] KARGAR S H R,SALEHZADEH H,SHAHNAZARI H.Post-cyclic behavior of carbonate sand of the northern coast of the Persian Gulf[J].Marine Georesources&Geotechnology,2016,34(2):169-180.
    [73] KAGGWA W S,BOOKER J R,CARTER J P.Residualstrains in calcareous sand due to irregular cyclic loading[J].Journal of Geotechnical Engineering,1991,117(2):201-218.
    [74] KNODEL P C,AL-DOURI R H,POULOS H G.Static and cyclic direct shear tests on carbonate sands[J].Geotechnical Testing Journal,1992,15(2):20-25.
    [75] AIREY D W,FAHEY M.Cyclic response of calcareous soil from the north-west shelf of Australia[J].Geotechnique,1991,28(6):101-121.
    [76] AIREY D W.Triaxial testing of naturally cemented carbonate soil[J].Journal of Geotechnical Engineering,1993,119(9):1379-1398.
    [77]虞海珍,汪稔.钙质砂动强度试验研究[J].岩土力学,1999,20(4):6-11.
    [78] MARTIN J R.liquefaction susceptibility of uncemented calcareous sands from Puerto rico by cyclic triaxial testing[D].Virginia Tech,2008.
    [79]李建国,汪稔,虞海珍,等.初始主应力方向对钙质砂动力特性影响的试验研究[J].岩土力学,2005,26(5):723-727.
    [80]虞海珍,汪稔,赵文光,等.波浪荷载下钙质砂孔压增长特性的试验研究[J].武汉理工大学学报,2006,28(11):86-89.
    [81]徐学勇,汪稔,王新志,等.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学,2012,33(10):402-414.
    [82]于潇,陈力,方秦.珊瑚砂中应力波衰减规律的实验研究[J].岩石力学与工程学报,2018,32(X):1-10.
    [83] HOWDYSHELL P A.The use of coral as an aggregate for Portland cement boncrete structures[R].Champaign:Army Construction Engineering Research Laboratory,1974.
    [84]陈兆林,陈天月,曲勣明.珊瑚礁砂混凝土的应用可行性研究[J].海洋工程,1991,9(3):67-80.
    [85] RAMAMURTHY K,ARUMUGAM R A.Study of compressive strength characteristics of coral aggregate concrete[J].Magazine of Concrete Research,1996,48(176):141-148.
    [86]赵艳林,韩超,张栓柱,等.海水拌养珊瑚混凝土抗压龄期强度试验研究[J].混凝土,2011(2):43-45.
    [87]李林.珊瑚混凝土的基本特性研究[D].南宁:广西大学,2012.
    [88]高屹,韦灼彬,孙潇.珊瑚骨料混凝土基本力学性能试验研究[J].海军工程大学学报,2017,29(1):64-68.
    [89]王磊,赵艳林,吕海波.珊瑚骨料混凝土的基础性能及研究应用前景[J].混凝土,2012(2):99-100.
    [90]郭超,潘跃进,倪琦,等.基于性能的珊瑚集料混凝土试验研究[J].公路交通科技(应用技术版),2018,12(1):122-124.
    [91]紫民,刘旷怡,刘松,等.珊瑚礁砂细骨料基本性能研究[J].建材世界,2015,36(5):11-14.
    [92]丁沙,张国志,陈飞翔,等.珊瑚砂混凝土配制技术研究[J].建材世界,2016,37(2):15-20.
    [93]王以贵.珊瑚混凝土在港工中应用的可行性[J].水运工程,1988(9):48-50.
    [94]彭自强,彭胜,李达.水泥-无机聚合物珊瑚礁砂混凝土工作性能试验研究[J].混凝土,2018(2):46-50.
    [95]袁银峰.全珊瑚海水混凝土的配合比设计和基本性能[D].南京:南京航空航天大学,2015.
    [96] MREMA A L,BUNGARA S H.Achieving high strength/high performance concrete from coral-limestone aggregates using ordinary Portland cement,fly ash and superplasticizer[C]//International Conference on Structural Engineering,Mechanics and Computation.2016.1380.
    [97] EHLERT R.Coral concrete at bikini atoll[J].Concrete International,1991,13(1):19-24.
    [98]沈晓冬,李宗津.海洋工程水泥与混凝土材料[M].北京:化学工业出版社,2016.
    [99] KAKOOEI S,AKIL H M,DOLATI A,et al.The corrosion investigation of rebar embedded in the fibers reinforced concrete[J].Construction&Building Materials,2012,35(10):564-570.
    [100] WANCHAI Y.Study on strength and durability of concrete using low quality coarse aggregate from circum pacific region[A].Fourth Regional Symposium on Infrastructure Development in Civil Engineering(RSID4),April 2003,Bangkok,Thailand.
    [101] WATTANACHAI P.A study on chloride ion diffusivity of porous aggregate concretes and improvement method[J].Adv Mater Res,2013,65(1):30-44.
    [102]达波,余红发,麻海燕,等.南海海域珊瑚混凝土结构的耐久性影响因[J].硅酸盐学报,2016,44(2):253-260.
    [103]窦雪梅,余红发,麻海燕,等.珊瑚混凝土在海洋环境中氯离子扩散实验[J].海洋工程,2017,35(1):129-135.
    [104] WANG Q,LI P,TIAN Y,et al.Mechanical properties and microstructure of portland cement concrete prepared with coral reef sand[J].Journal of Wuhan University of Technology(Materials Science Edition),2016,31(5):996-1001.
    [105] ZHANG Z H,SANG Z Q,ZHANG L Y,et al.Experimental research on durability of concrete made by seawater and sea-sand[J].Advanced Materials Research,2013,641-642:385-388.
    [106] CHENG S,SHUI Z,YU R,et al.Multiple influences of internal curing and supplementary cementitious materials on the shrinkage and microstructure development of reefs aggregate concrete[J].Construction&Building Materials,2017,155:522-530.
    [107] GILCHRIST J M.Load tests on tubular piles in Coralline Strata[J].Journal of Geotechnical Engineering,1985,111(5):641-655.
    [108]单华刚,汪稔.钙质砂中的桩基工程研究进展述评[J].岩土力学,2000,21(3):299-304.
    [109]刘崇权,单华刚,汪稔,等.钙质土工程特性及其桩基工程[J].岩石力学与工程学报,1999,18(3):331-335.
    [110]江浩,汪稔,吕颖慧,等.钙质砂中模型桩的试验研究[J].岩土力学,2010,31(3):780-784.
    [111] DOLWIN J,KHORSHID M S,COUDOEVER P.Evaluation of driven pile capacity-methods and results[C]//Proceedings of the international conference on calcareous sediments,1988:409-428.
    [112]秦月,孟庆山,汪稔,等.钙质砂地基单桩承载特性模型试验研究[J].岩土力学,2015,36(6):1714-1720.
    [113] DUTT R N,CHENG A P.Frictional response of piles in calcareous deposits[C]//Proceedings of the 16th Annual Offshore Technology Conference.Houston:[s.n.],1984:527-530.
    [114]江浩,汪稔,吕颖慧,等.钙质砂中群桩模型试验研究[J].岩石力学与工程学报,2010,29(s1):3023-3028.
    [115]朱长歧,初晓锋.钙质砂中锚定板的极限抗拔力计算[J].岩土力学,2003,24(s2):153-158.
    [116]罗汀,刘林,姚仰平.考虑颗粒破碎的砂土临界状态特性描述[J].岩土工程学报,2017,39(4):592-600.
    [117]米占宽,李国英,陈铁林.考虑颗粒破碎的堆石体本构模型[J].岩土工程学报,2007,29(12):1865-1869.
    [118]沈珠江,章为民.损伤力学在土力学中的应用[C]//第三届全国岩土力学数值分析与解析方法讨论会论文集,武汉测绘科技大学出版社,1988:47-51.
    [119]沈珠江.结构性黏土的非线性损伤力学模型[J].水利水运科学研究,1993(3):247-255.
    [120]沈珠江.结构性黏土的堆砌体模型[J].岩土力学,2000,21(1):1-4.
    [121]沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002(4):1-6.
    [122]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005,27(5):489-494.
    [123]孙吉主,王勇,汪稔.钙质砂的接触摩擦特性及其理论模型研究[J].勘察科学技术,2004(5):7-9.
    [124]孙吉主,罗新文.考虑剪胀性与状态相关的钙质砂双屈服面模型研究[J].岩石力学与工程学报,2006,25(10):2145-2149.
    [125]汪稔,孙吉主.钙质砂不排水性状的损伤-滑移耦合作用分析[J].水利学报,2002,33(7):75-78.
    [126]迟世春,贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正[J].岩土工程学报,2005,27(11):1266-1269.
    [127]贾宇峰,迟世春,林皋.考虑颗粒破碎的粗粒土剪胀性统一本构模型[J].岩土力学,2010,31(5):1381-1388.
    [128] SUN D A,HUANG W X,SHENG D C,et al.An elastoplastic model for granular materials exhibiting particle crushing[J].Key Engineering Materials,2007,340-341:1273-1278.
    [129]姚仰平,万征,陈生水.考虑颗粒破碎的动力UH模型[J].岩土工程学报,2011,33(7):1036-1044.
    [130]申存科,迟世春,贾宇峰.考虑颗粒破碎影响的粗粒土本构关系[J].岩土力学,2010,31(7):2111-2115.
    [131]孙海忠,黄茂松.考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J].岩土工程学报,2010,32(8):1284-1290.
    [132]张丙印,贾延安,张宗亮.堆石体修正Rowe剪胀方程与南水模型[J].岩土工程学报,2007,29(10):1443-1448.
    [133] ROWE P W.The Stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J].Proceedings of the Royal Society of London,1962,269(1339):500-527.
    [134] DAOUADJI A,HICHER P Y,RAHMA A.An elastoplastic model for granular materials taking into account grain breakage[J].European Journal of Mechanics,2001,20(1):113-137.
    [135] RUSSELL A R,KHALILI N.A bounding surface plasticity model for sands exhibiting particle crus.[J].Canadian Geotechnical Journal,2004,41(6):1179-1192.
    [136] WOOD D M,MAEDA K.Changing grading of soil:effect on critical states[J].Acta Geotechnica,2008,3(1):3-14.
    [137] THEVANAYAGAM S,SHENTHAN T,Mohan S,et al.Undrained fragility of clean sands,silty sands,and sandy silts[J].Journal of Geotechnical&Geoenvironmental Engineering,2002,128(10):849-859.
    [138] KIKUMOTO M,WOOD D M,RUSSELL A.Particle crushing and deformation behaviour[J].Soils&Foundations,2010,50(4):547-563.
    [139] LIU H,ZOU D.Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J].Journal of Engineering Mechanics,2013,139(5):606-615.
    [140] SIMONINI P.Analysis of behavior of sand surrounding pile tips[J].Journal of Geotechnical&Geoenvironmental Engineering,1996,122(11):652-654.
    [141] HU W,YIN Z Y,DANO C,et al.A constitutive model for granular materials considering grain breakage[J].Science China Technological Sciences,2011,54(8):2188-2196.
    [142] JIANG M J,YU H S,HARRIS D.Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J].International Journal for Numerical&Analytical Methods in Geomechanics,2006,30(8):723-761.
    [143]蒋明镜,周雅萍,陈贺.不同胶结厚度下粒间胶结力学特性的试验研究[J].岩土力学,2013(5):1264-1273.
    [144] JIANG M,ZHANG N,CUI L,et al.A size-dependent bond failure criterion for cemented granules based on experimental studies[J].Computers&Geotechnics,2015,69:182-198.
    [145]王华宁,龚浩,李富根,等.考虑宽度与厚度的颗粒胶结模型理论分析[J].岩土工程学报,2017,39(5):822-831.
    [146] DELENNE J Y,YOUSSOUFI M S E,CHERBLANC F,et al.Mechanical behaviour and failure of cohesive granular materials[J].International Journal for Numerical&Analytical Methods in Geomechanics,2004,28(15):1577-1594.
    [147] OBERMAYR M,DRESSLER K,VRETTOS C,et al.A bonded-particle model for cemented sand[J].Computers&Geotechnics,2013,49(49):299-313.
    [148] SHEN Z,JIANG M,WAN R.Numerical study of inter-particle bond failure by 3Ddiscrete element method[J].International Journal for Numerical&Analytical Methods in Geomechanics,2016,40(4):523-545.
    [149] BRENDEL L,TRK J,KIRSCH R,et al.A contact model for the yielding of caked granular materials[J].Granular Matter,2011,13(6):777-786.
    [150] CARMONA H A,WITTEL F K,KUN F,et al.Fragmentation processes in impact of spheres[J].Physical Review E Statistical Nonlinear&Soft Matter Physics,2008,77(1):051302.
    [151] WANG J,YAN H.On the role of particle breakage in the shear failure behavior of granular soils by DEM[J].International Journal for Numerical&Analytical Methods in Geomechanics,2013,37(8):832-854.
    [152]张程林,周小文.砂土颗粒三维形状模拟离散元算法研究[J].岩土工程学报,2015,37(S1):115-119.
    [153] WANG J,YAN H.DEM analysis of energy dissipation in crushable soils[J].Soils&Foundations,2012,52(4):644-657.
    [154] BONO J P D,MCDOWELL G R.DEM of triaxial tests on crushable sand[J].Granular Matter,2014,16(4):551-562.
    [155]杨贵,许建宝,刘昆林.粗粒料颗粒破碎数值模拟研究[J].岩土力学,2015,36(11):3301-3306.
    [156]STRM J A,HERRMANN H J.Fragmentation of grains in a two-dimensional packing[J].The European Physical Journal B-Condensed Matter and Complex Systems,1998,5(3):551-554.
    [157] BEN-NUN O,EINAV I.The role of self-organization during confined comminution of granular materials[J].Philos Trans A Math Phys Eng Sci,2010,368(1910):231-247.
    [158]张科芬,张升,滕继东,等.颗粒破碎的三维离散元模拟研究[J].岩土力学,2017,38(7):2119-2127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700