用户名: 密码: 验证码:
移动式打磨作业粉尘分布规律及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dust distribution rule and influencing factors in mobile grinding operation
  • 作者:蒋仲安 ; 高康宁 ; 陈记合 ; 兰桂
  • 英文作者:JIANG Zhongan;GAO Kangning;CHEN Jihe;LAN Gui;School of Civil and Resource Engineering, University of Science and Technology Beijing;
  • 关键词:打磨 ; 数学模型 ; 粉尘质量浓度 ; 影响因素 ; 分布规律
  • 英文关键词:grinding;;mathematical model;;dust mass concentration;;influence factors;;distribution law
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:北京科技大学土木与资源工程学院;
  • 出版日期:2019-05-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.297
  • 基金:国家重点研发计划项目(2016YFC0801700)~~
  • 语种:中文;
  • 页:ZNGD201905003
  • 页数:7
  • CN:05
  • ISSN:43-1426/N
  • 分类号:22-28
摘要
为了探究移动式打磨作业粉尘扩散分布规律及其影响因素,根据气溶胶力学和流体力学原理,在高斯扩散模型基础上建立移动式打磨作业粉尘扩散分布数学模型;利用Python语言设计基于该模型的数据可视化仿真程序,并通过该仿真程序探究粉尘源强、平均粒径、风速及稳定度这4个因素对粉尘质量浓度分布的影响。研究结果表明:在打磨作业阶段,粉尘集中分布在打磨作业点处,粉尘云的位置和质量浓度呈稳定状态;打磨作业结束后,粉尘质量浓度随时间延长而逐渐降低,粉尘云向下游漂移且向四周扩散,其影响半径增大;粉尘质量浓度随源强增强而增大,源强对粉尘质量浓度峰值的位置无影响;粉尘平均粒径越小,粉尘质量浓度越高;风速越大,粉尘质量浓度整体越低,粉尘质量浓度峰值的位置越靠近打磨作业点;当大气稳定度在A~D范围内时,大气稳定度越高,粉尘质量浓度越高,粉尘质量浓度峰值位置有向打磨作业点下风侧移动的趋势;当大气稳定度为F时,粉尘的迁移距离最远。
        In order to investigate the distribution and influencing factors of dust diffusion in mobile grinding operations, a dust diffusion model for grinding operations was established based on aerosol mechanics, fluid dynamics theory and Gaussian diffusion model. A simulation program based on the model was implemented in Python. Through the simulation program, the effects of dust source intensity, average diameter, wind speed and stability on distribution of dust mass concentration were investigated. The results show that during the grinding operation, dust is concentrated at the grinding operation point, and the position and mass concentration of dust clouds are stable. After the grinding operation, the dust mass concentration gradually decreases with time, and the dust cloud drifts downstream and goes around. The influenced area of dust cloud is thus enlarged. The dust mass concentration increases with the increase of source intensity, and the magnitude of the source intensity has no influence on the position of the dust mass concentration peak. The dust mass concentration increases with the decrease of the average diameter. The dust mass concentration decreases and the position of the dust mass concentration peak is closer to the grinding operation point as the wind speed increases. In the range of atmospheric stability A to D, the dust mass concentration increases and the peak position of the dust mass concentration moves toward the downwind side of the grinding operation point with the increase of atmospheric stability. The dust migration distance is the longest when the atmospheric stability is F.
引文
[1]多英全,刘垚楠,胡馨升.2009-2013年我国粉尘爆炸事故统计分析研究[J].中国安全生产科学技术,2015,11(2):186-190.DUO Yingquan,LIU Yaonan,HU Xinsheng.Statistical analysis on dust explosion accidents occurring in China during 2009-2013[J].Journal of Safety Science and Technology,2015,11(2):186-190.
    [2]蒋仲安,陈雅,王佩.双尘源耦合下呼吸性粉尘扩散的紊流系数求解[J].哈尔滨工业大学学报,2017,49(8):129-134.JIANG Zhongan,CHEN Ya,WANG Pei.Solution of turbulence coefficient in the diffusion of respirable dust under the coupling of two dust sources[J].Journal of Harbin Institute of Technology,2017,49(8):129-134.
    [3]陈举师,蒋仲安,张义坤.破碎硐室粉尘质量浓度分布规律的实验研究[J].东北大学学报(自然科学版),2015,36(7):1051-1055.CHEN Jushi,JIANG Zhongan,ZHANG Yikun.Experimental study on dust concentration distribution in crushing chamber[J].Journal of Northeastern University(Natural Science),2015,36(7):1051-1055.
    [4]孙大伟.木工镂铣作业粉尘分布规律研究[D].哈尔滨:哈尔滨理工大学测控技术与通信工程学院,2017:5-6.SUN Dawei.Study on the distribution in woodworking router operation[D].Harbin:School of Measurement-Control Technology and Communications Engineering.Harbin University of Science and Technology,2017:5-6.
    [5]罗艾民,魏利军.有毒重气泄漏安全距离数值方法[J].中国安全科学学报,2005,15(8):98-100.LUO Aimin,WEI Lijun.Numerical method of safety distance for poisonous dense gaseous leakage[J].China Safety Science Journal,2005,15(8):98-100.
    [6]邓文英,丁训静.净水厂氯气泄漏的环境风险分析[J].环境监测管理与技术,2008,20(4):54-56.DENG Wenying,DING Xunjing.Analysis on environmental risk of liquid chlorine leakage in water plant[J].The Administration and Technique of Environmental Monitoring,2008,20(4):54-56.
    [7]何宁,吴宗之,郑伟.一种改进的有毒气体扩散高斯模型算法及仿真[J].应用基础与工程科学学报,2010,18(4):571-580.HE Ning,WU Zongzhi,ZHENG Wei.Simulation of an improved gaussian model for hazardous gas diffusion[J].Journal of Basic Science and Engineering,2010,18(4):571-580.
    [8]ARYSTANBEKOVA N K.Application of Gaussian plume models for air pollution simulation at instantaneous emissions[J].Mathematics and Computers in Simulation,2004,67(4/5):451-458.
    [9]WEIL J C,BROWER R P.An updated Gaussian plume model for tall stacks[J].Journal of the Air Pollution Control Association,1984,34(8):818-827
    [10]BRUSCA S,FAMOSO F,LANZAFAME R,et al.Theoretical and experimental study of Gaussian plume model in small scale system[J].Energy Procedia,2016,101:58-65.
    [11]闪顺章,王从陆.焊接烟尘扩散数学模型研究[J].中国安全生产科学技术,2018,14(6):117-181.SHAN Shunzhang,WANG Conglu.Study on numerical model for diffusion of welding fume[J].Journal of Safety Science and Technology,2018,14(6):117-181.
    [12]樊建人,姚军,张新育,等.气固两相流中颗粒-颗粒随机碰撞新模型[J].工程热物理学报,2001,22(5):629-632.FAN Jianren,YAO Jun,ZHANG Xinyu,et al.Modeling particle-to-particle interactions in gas-solid flows[J].Journal of Engineering Thermophysics,2001,22(5):629-632.
    [13]郭廷忠.环境影响评价学[M].北京:科学出版社,2007:110-111GUO Tingzhong.Environmental impact assessment[M].Beijing:Science Press,2007:110-111
    [14]SHI Guoqing,LIU Maoxi,GUO Zhixiong,et al.Unsteady simulation for optimal arrangement of dedusting airduct in coal mine heading face[J].Journal of Loss Prevention in the Process Industries,2017,46:45-53.
    [15]ZHOU Gang,ZHANG Qi,BAI Ruonan,et al.The diffusion behavior law of respirable dust at fully mechanized caving face in coal mine:CFD numerical simulation and engineering application[J].Process Safety and Environmental Protection,2017,106:117-128.
    [16]HU Shengxong,FENG Guorui,REN Xiangyan,et al.Numerical study of gas-solid two-phase flow in a coal roadway after blasting[J].Advanced Powder Technology,2016,27(4):1607-1617.
    [17]李明,吴超.粉尘点污染扩散模型的可视化研究[J].环境科学与技术,2006,29(11):12-14.LI Ming,WU Chao.Visualization for dust source diffusion models[J].Environmental Science And Technology,2006,29(11):12-14+115-116.
    [18]刘振平,贺怀建,李强,等.基于Python的三维建模可视化系统的研究[J].岩土力学,2009,30(10):3037-3042.LIU Zhenping,HE Huaijian,LI Qiang,et al.Study of the technology of 3D modeling and visualization system based on Python[J].Rock and Soil Mechanics,2009,30(10):3037-3042.
    [19]徐丙立,林珲,胡亚,等.多点源空气污染高斯扩散模式并行方法研究[J].北京理工大学学报,2014,34(11):1145-1149.XU Bingli,LIN Hui,HU Ya,et al.Design and implement a parallel algorithm of Gauss plume model for air pollution dispersion[J].Transactions of Beijing Institute of Technology,2014,34(11):1145-1149.
    [20]李小忠,侯祺棕,高燕,等.城市大气稳定度分级模型的研究[J].工业安全与防尘,2001,27(4):27-31.LI Xiaozhong,HOU Qizong,GAO Yan,et al.Study on model of classification of urban air stabilization[J].Industrial Safety and Environmental Protection,2001,27(4):27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700