用户名: 密码: 验证码:
甲烷浓度对PMMA/甲烷混合爆炸下限及预热区厚度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of methane concentration on minimum concentration and thickness of preheating zone in PMMA/methane hybrid explosion
  • 作者:甘波 ; 高伟 ; 张新燕 ; 姜海鹏 ; 毕明树
  • 英文作者:GAN Bo;GAO Wei;ZHANG Xinyan;JIANG Haipeng;BI Mingshu;School of Chemical Machinery and Safety Engineering,Dalian University of Technology;School of Mining and Safety Engineering,Shandong University of Science and Technology;
  • 关键词:混合爆炸 ; 爆炸下限 ; 预热区厚度 ; 火焰传播速度 ; 粒径分布
  • 英文关键词:hybrid explosion;;minimum explosible concentration;;preheating zone thickness;;flame propagation velocity;;particle size distribution
  • 中文刊名:BZCJ
  • 英文刊名:Explosion and Shock Waves
  • 机构:大连理工大学化工机械与安全学院;山东科技大学矿业与安全工程学院;
  • 出版日期:2017-11-29 15:27
  • 出版单位:爆炸与冲击
  • 年:2019
  • 期:v.39;No.184
  • 基金:国家自然科学基金(51406023,51674059);; 中央高校基本科研业务费专项(DUT16QY05)
  • 语种:中文;
  • 页:BZCJ201902021
  • 页数:8
  • CN:02
  • ISSN:51-1148/O3
  • 分类号:188-195
摘要
为探索甲烷体积分数对聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)/甲烷混合爆炸下限及预热区厚度的影响,采用半封闭可视化实验装置研究甲烷/PMMA粉尘混合爆炸火焰传播过程。结果发现,随着甲烷体积分数增加,平均粒径为28和54μm的粉尘爆炸下限逐渐降低,平均粒径为54μm的粉尘混合爆炸预热区厚度增大,28μm粉尘混合爆炸预热区厚度基本不变。爆炸下限的降低是由于甲烷与PMMA粉尘存在协同作用;28μm粉尘混合爆炸的预热区厚度不变表明28μm粒子在预热区中完全裂解气化与甲烷气体形成均相的气体预热区。此外,在甲烷体积分数相同时,粉尘质量浓度的增加使得火焰传播速度增大。而在组合当量比一定的条件下,粉尘质量浓度的增加并未使得混合爆炸火焰传播速度增大,而是出现一定的波动变化。
        To explore the effects of methane concentration on the minimum explosible concentration and the thickness of preheating zone of polymethyl methacrylate(PMMA)/methane hybrid explosions,we investigated the flame propagations of methane/PMMA hybrid explosions in a semi-closed visualization experimental apparatus.The results showed that the minimum explosible concentration of the dusts with the average particle size of 28μm and 54μm decreased with the increase in the methane concentration.This could be attributed to the synergistic effect of methane and PMMA particles,which allowed the explosion of the combustible gases pyrolyzed/volatilized by PMMA particles at a lower concentration.It was also observed that the thickness of the preheating zone of the 54μm dust increased as the methane concentration increased,while the thickness of the preheating zone of the 28μm dust did not change remarkably.It was inferred that the 28μm PMMA particles pyrolyzed/volatilized completely to form a homogeneous preheating zone with methane.Moreover,the flame propagation velocity increased as did the dust concentration with the same methane concentration.Meanwhile,the flame propagation velocity fluctuated with the increase of the methane concentration when the equivalence ratios were approximately the same.
引文
[1]ENGLER C.Beitrage zur kenntniss der staubexplosionen[M].Chemische Industrie,1885:171-173.
    [2]TORRENT J G,FUCHS J C.Flammability and explosion propagation of methane/coal dust hybrid mixtures[C]∥Proceedings of the 23rd International Conference of the Safe Mining Research Institute.Washington,1989.
    [3]CHATRATHI K.Dust and hybrid explosibility in a 1m3 spherical chamber[J].Process Safety Progress,1994,13(4):183-189.DOI:10.1002/prs.680130403.
    [4]CASHDOLLAR K L.Coal dust explosibility[J].Journal of Loss Prevention in the Process Industries,1996,9(6):65-76.DOI:10.1016/0950-4230(95)00050-X.
    [5]CASHDOLLAR K L.Overview of dust explosibility characteristics[J].Journal of Loss Prevention in the Process Industries,2000,13(3/4/5):183-199.DOI:10.1016/S0950-4230(99)00039-X.
    [6]DUFAND O,PERRIN L,TRAORE M.Dust/vapour explosions:Hybrid behaviours[J].Journal of Loss Prevention in the Process Industries,2008,21(4):481-484.DOI:10.1016/j.jlp.2007.11.005.
    [7]司荣军.矿井瓦斯煤尘爆炸传播实验研究[J].中国矿业,2008,17(12),81-84.SI Rongjun.Experiment study on the propagation laws of gas and coal dust explosion in mine[J].China Mining Magazine,2008,17(12):81-84.
    [8]LIU Y,SUN J H,CHENG D L.Flame propagation in the hybrid mixture of coal dust and methane[J].Journal of Loss Prevention in the Process Industries,2007,20(4/5/6):691-697.DOI:10.1016/j.jlp.2007.04.029.
    [9]BAI C H,GONG G D,LIU Q M,et al.The explosion overpressure field and flame propagation of methane/air and methane/coal dust/air mixtures[J].Safety Science,2011,49(10):1349-1354.DOI:10.1016/j.ssci.2011.05.005.
    [10]陈东梁.甲烷/煤尘复合火焰传播特性及机理的研究[D].合肥:中国科学技术大学,2007.
    [11]喻健良,纪文涛,孙会利,等.甲烷/石松子粉尘混合体系爆炸下限的变化规律[J].爆炸与冲击,2017,37(6):924-930.DOI:10.11883/1001-1455(2017)06-0924-07.YU Jianliang,JI Wentao,SUN Huili,et al.Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J].Explosion and Shock Waves,2017,37(6):924-930.DOI:10.11883/1001-1455(2017)06-0924-07.
    [12]喻健良,孙会利,纪文涛,等.甲烷/石松子两相混合体系爆炸强度参数[J].爆炸与冲击,2018,38(1):92-97.DOI:10.11883/bzycj-2016-0276YU Jianliang,SUN Huili,JI Wentao,et al.Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J].Explosion and Shock Waves,2018,38(1):92-97.DOI:10.11883/bzycj-2016-0276.
    [13]李润之.瓦斯煤尘共存条件下的煤尘云爆炸下限[J].爆炸与冲击,2018,38(4):913-917.DOI:10.11883/bzycj-2016-0331.LI Rruizhi.Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust[J].Explosion and Shock Waves,2018,38(4):913-917.DOI:10.11883/bzycj-2016-0331.
    [14]ADDAI E K,GABEL D,KRAUSE U.Lower explosion limit of hybrid mixtures of burnable gas and dust[J].Journal of Loss Prevention in the Process Industries,2015,36:497-504.DOI:10.1016/j.jlp.2015.02.014.
    [15]ADDAI E K,GABEL D,KAMAL M,et al.Minimum ignition energy of hybrid mixtures of combustible dusts and gases[J].Process Safety and Environmental Protection,2016,102:503-512.DOI:10.1016/j.psep.2016.05.005.
    [16]AMYOTTE P R,MINTZ K J,PEGG M J,et al.The ignitability of coal dust-air and methane-coal dust-air mixtures[J].Fuel,1993,72(5):671-679.DOI:10.1016/0016-2361(93)90580-U.
    [17]DENKEVITS A.Explosibility of hydrogen-graphite dust hybrid mixtures[J].Journal of Loss Prevention in the Process Industries,2007,20:698-707.DOI:10.1016/j.jlp.2007.04.033.
    [18]GAO W,MOGI T,RONG J Z,et al.Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J].Powder Technology,2015,271:125-133.DOI:10.1016/j.powtec.2014.11.003.
    [19]PILOR,RAMALHO E,PINHO C.Explosibility of cork dust in methane/air mixtures[J].Journal of Loss Prevention in the Process Industries,2006,19:17-23.DOI:10.1016/j.jlp.2005.05.001.
    [20]ZENG W R,LI S F,CHOW W K.Preliminary studies on burning behaviors of polymethylmethacrylate(PMMA)[J].Journal of Fire Sciences,2002,20(4):297-317.DOI:10.1106/073490402027989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700