用户名: 密码: 验证码:
高地震烈度区粉土地基抗液化及隧道抗震研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti Liquefaction of Silty Soil Foundation and Seismic Performance of Tunnel in High Earthquake Intensity Area
  • 作者:张焕强 ; 向晓辉
  • 英文作者:Zhang Huanqiang;Xiang Xiaohui;Changjiang Institute of Survey,Planning,Design and Research;China Railway Siyuan Survey and Design Group Co.Ltd.;
  • 关键词:粉土地基 ; 地震液化 ; 隧道抗震 ; 数值分析
  • 英文关键词:silty soil foundation;;seismic liquefaction;;tunnel seismic capability;;numerical analysis
  • 中文刊名:BASE
  • 英文刊名:Chinese Journal of Underground Space and Engineering
  • 机构:长江勘测规划设计研究院;中铁第四勘察设计院集团有限公司;
  • 出版日期:2017-04-15
  • 出版单位:地下空间与工程学报
  • 年:2017
  • 期:v.13;No.102
  • 基金:岩土力学与工程国家重点实验室开放基金(Z015009);; 长江水利委员会长江科学院开放研究基金(CKWV2016379/KY)
  • 语种:中文;
  • 页:BASE2017S1052
  • 页数:7
  • CN:S1
  • ISSN:50-1169/TU
  • 分类号:338-344
摘要
昆明东外环下穿隧道工程是昆明南火车站枢纽工程中的一个重大项目,在勘察过程中发现K2+100~K2+200隧段含两层粉土层,且其中一层紧靠隧道设计底板。由于该工程处于高地震烈度区,在地震作用下粉土极易发生液化,直接影响到上部隧道结构的稳定。针对该工程实例,利用FLAC~(3D)软件开展了高地震烈度区粉土地基抗液化及不同隧道衬砌混凝土强度等级与衬砌厚度等条件下的隧道抗震研究。计算结果表明,在设计地震动加速度为0.2 g的条件下,该工程粉土地基超孔压比约为0.2,粉土地基不会发生液化;随着衬砌厚度的增加,衬砌弯矩和剪力总体呈现增长趋势,而混凝土强度等级的变化对衬砌的受力影响很小。分析结果初步揭示了可液化土中隧道结构的抗震特性,可为设计所参考。
        The under-crossing tunnel of east external ring of Kunming is one of the most important projects of the Kunming South Railway Station hub construction. Two layers of silty soil are found in K2 + 100 ~ K2 + 200 tunnel section and one of them lies closely under the tunnel floor. Since the project lies in a high seismic intensity area and the silty soil is easy to liquefied under the action of earthquake,it is important to study the anti liquefaction of silty soil foundation and the seismic performance of tunnel. The liquefaction and seismic performance under different concrete strength grade and different thickness of lining is studied using FLAC~(3D)software. The results indicate that the silty soil foundation will not be liquefied under the designed seismic peak ground acceleration 0. 2 g; the maximum bending moment and shear force of lining increase along with the increment of the concrete strength grade,however,the increment of lining thickness has little influence on the tunnel stresses. The analysis results preliminarily reveal the seismic performances of the tunnel structure in liquefied soil,which can be used for design reference.
引文
[1]王明年,崔光耀.高烈度地震区隧道减震模型的建立及其减震效果模型试验研究[J].岩土力学,2010,31(6):1884-1890.
    [2]童立元,王斌,刘义怀,等.地震液化条件下地面的大变形三维数值分析[J].岩土力学,2008,29(8):2226-2230.
    [3]潘健,刘利艳.地基抗液化能力评估方法讨论[J].地震工程与工程振动,2006,26(3):242-244.
    [4]Terzaghi K,Peek R B.Soil mechanics in engineering practice[M].New York:John Wiley&Sons Press,1948.
    [5]Martin G R,Finn W D L,Seed H B.Fundamentals of liquefaction under cyclic loading[J].Journal of the Geotechnical Engineering Division,1975,101(5):423-438.
    [6]Finn W D L.State-of-the-art of geotechnical earthquake engineering practice[J].Soil Dynamics and Earthquake Engineering,2000,20(1-4):1-15.
    [7]Juang C H,Rosowsky D V,Tang W H.Reliabilitybased method for assessing liquefaction potential of soils[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8):684-689.
    [8]Desai C S.Evaluation of liquefaction using disturbed state and energy approaches[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(7):618-631.
    [9]沈珠江.关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):110-111.
    [10]Dowding C H,Rozen A.Damage to rock tunnels from earthquake shaking[J].Journal of the Geotechnical Engineering Division,1978,104(2):175-191.
    [11]Sunil S,William R J.Underground opening damage from earthquakes[J].Engineering Geology,1991,30(3):263-276.
    [12]Hashash Y M A,Hook J J,Schmidt B,et al.Seismic design and analysis of underground structures[J].Tunnelling and Underground Space Technology,2001,16(4):247-293.
    [13]Phillips J S,Luke S A.Tunnel damage resulting from seismic loading[A]∥Prakash S.ed.Proceeding of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C].Saint Louis:University of Missouri-Rolla,1991.
    [14]Wang Z Z,Jiang Y J,Zhu C A,et al.Shaking table tests of tunnel linings in progressive states of damage[J].Tunnelling and Underground Space Technology,2015,50:109-117.
    [15]方林,蒋树屏,林志,等.穿越断层隧道振动台模型试验研究[J].岩土力学,2011,32(9):2709-2713.
    [16]Lysmer J,Kuhlemeyer R L.Finite dynamic model for infinite media[J].Journal of the Engineering Mechanics Division,1969,95(4):859-878.
    [17]郭军,王明年,田尚志.高烈度地震区公路隧道明洞抗震计算分析[J].岩土工程学报,2007,29(11):1733-1736.
    [18]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2013.
    [19]陈仲颐.土力学[M].北京:清华大学出版社,1994.
    [20]Yue Q,Ang A H S.Dynamic response and reliability of tunnel under earthquakes[A]∥Haukaas T.ed.Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering[C].Vancouver:University of British Columbia Library,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700