用户名: 密码: 验证码:
微管SOFC复合支撑体NiO/La_(0.7)Ca_(0.3)CrO_(3-δ)的相转化纺丝法制备与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of composite support NiO/La_(0.7)Ca_(0.3)CrO_(3-δ) by phase-conversion spinning method for micro-tubular SOFC
  • 作者:王松林 ; 徐向棋 ; 王东生
  • 英文作者:WANG Song-lin;XU Xiang-qi;WANG Dong-sheng;Department of Mechanical Engineering,Tongling University;
  • 关键词:微管固体氧化物燃料电池(微管SOFC) ; 中空纤维膜 ; 烧结性能 ; 电导率
  • 英文关键词:micro-tubular SOFC;;hollow fiber membrane;;sintering ability;;electrical conductivity
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:铜陵学院机械工程学院;
  • 出版日期:2019-03-05 11:55
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.429
  • 基金:安徽省高校自然科学研究重点项目(KJ2017A468);; 国家自然科学基金项目(51301122);; 安徽省高校优秀青年人才支持计划重点项目(gxyqzd2016318)
  • 语种:中文;
  • 页:CLGC201902006
  • 页数:7
  • CN:02
  • ISSN:11-1800/TB
  • 分类号:46-52
摘要
采用固相反应法合成La_(0.7)Ca_(0.3)CrO_(3-δ)(LCC)粉体,用相转化纺丝法制备NiO/LCC (1∶1)中空纤维膜,1400℃空气中烧结作为微管固体氧化物燃料电池的复合支撑体。借助粒度分析仪、热分析仪、X射线衍射仪、扫描电镜、四端子测量仪、热膨胀仪、万能材料试验机等对复合支撑体的粉体粒度、烧结性能、致密度、断面微结构、电导性能、热膨胀性能和抗弯强度进行分析。结果表明:LCC与NiO粉体在1400℃的电池共烧温度下化学性质稳定,烧结性能良好。微管断面总体呈现表面皮层和内部双层径向平行排列且均匀分布的手指状孔隙结构,孔隙率达到60.6%,还原后的孔隙率增加到68.1%。纯H_2中的电导率随温度升高而降低,700℃时达到10.8S·cm~(-1)。还原前后的抗弯强度分别为39.6MPa和33.2MPa,热膨胀系数TEC为12.4×10~(-6)K~(-1),与其他电池材料相匹配。
        Using solid-phase reaction process to synthesize La_(0.7)Ca_(0.3)CrO_(3-δ)(LCC) primary powder, composite hollow fiber membrane of NiO/LCC(1∶1) was prepared by phase-conversion spinning method and then sintered at 1400℃ in air as micro-tubular solid oxide fuel cells(SOFC) support. The particle size distribution, TG-DTA thermal analysis, structure, morphologies, electrical conductivity, thermal expansion and bending strength were characterized by laser particulate size analyzer, thermal analyzer, X-ray diffraction, scanning electron microscopy, standard DC four-probe technique, thermal expansion dilatometer and universal material testing machine. Results indicate that LCC and NiO powders have considerable chemical and sintering compatibilities at SOFC co-firing temperature(1400℃). The fracture section of the hollow fiber membrane exhibits a sandwich-like structure with homogeneous porous surfaces. Two layers of obviously bigger parallel finger-like pores distribute uniformly between the inner and outer surfaces of the microtubule section. The porosity of the sample is 60.6%, and increases to a relatively high value of 68.1% after reduction. Electrical conductivity of the sintered specimen decreases as the temperature increasing in pure H_2. The value reaches 10.8 S·cm~(-1) at 700℃. Bending strength before and after reduction are 39.6 MPa and 33.2 MPa respectively. Thermal expansion coefficient(TEC) value of the NiO/LCC hollow fiber membrane gets to 12.4×10~(-6)K~(-1), which is very close to that of other SOFC components, such as NiO/YSZ anode and LCC interconnect.
引文
[1] WHISTON M M,BILEC M M,SCHAEFER L A. Influence of the charge double layer on solid oxide fuel cell stack behavior[J]. Journal of Power Sources,2015,293:767-777.
    [2] FRANCIS J S C,COLOGNA M,MONTINARO D,et al. Flash sintering of anode-electrolyte multilayers for SOFC applications [J]. Journal of the American Ceramic Society,2013,96(5):1352-1354.
    [3] XU M,LI T S,YANG M,et al. Modelling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. International Journal of Hydrogen Energy,2016,41(33):14927-14940.
    [4] SINGHAL S C,KENDALL K. 高温固体氧化物燃料电池—原理、设计和应用[M]. 韩敏芳,蒋先锋译.北京:科学出版社, 2007:169-197. SINGHAL S C,KENDALL K. High temperature solid oxide fuel cells:fundamentals, design and applications[M]. Translated by HAN M F and JIANG X F.Beijing:Science Press,2007:169-197.
    [5] FERGUS J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics,2004, 171(1):1-15.
    [6] FU Y P,WANG H C,OUYANG J. Electrical conduction behaviors and mechanical properties of Cu doping on B-site of (La0.8-Ca0.2)(Cr0.9Co0.1)O3-δ interconnect materials for SOFCs[J]. International Journal of Hydrogen Energy,2011,36(20):13073-13082.
    [7] LIU M F,ZHAO L,DONG D H,et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs[J]. Journal of Power Sources,2008,177:451-456.
    [8] ZHOU X L,MA J J,DENG F J,et al. A high performance interconnecting ceramics for solid oxide fuel cells (SOFCs)[J]. Solid State Ionics,2007,177(39/40):3461-3466.
    [9] CHEN Y H,LU X Y,DING Y Z,et al. Microwave assisted synthesis, sinterability and properties of Ca-Zn co-doped LaCrO3 as interconnect material for IT-SOFCs[J]. Journal of Rare Earths,2010,28(1):153-157.
    [10] 袁佟,邓畅光,毛杰,等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程,2017,45(7):1-6. YUAN T,DENG C G,MAO J,et al. Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Materials Engineering,2017,45(7):1-6.
    [11] 王松林,凤仪,王东生,等. 复合阳极共烧制备致密La0.7Ca0.3-Cr0.97O3-δ连接体薄膜的研究[J].无机化学学报,2012,28(4): 779-784. WANG S L,FENG Y,WANG D S,et al. Fabrication of dense La0.7Ca0.3Cr0.97O3-δ interconnect thin membrane on composite anode support by co-firing[J]. Chinese Journal of Inorganic Chemistry,2012,28(4):779-784.
    [12] 王松林,凤仪,王东生,等. 三层共烧制备LaCrO3基连接体/复合阳极/YSZ电解质的研究[J]. 金属学报,2012,48(5):587- 592. WANG S L,FENG Y,WANG D S,et al. Three-layer co-firing fabrication of LaCrO3-based ceramic interconnect,composite anode support and YSZ electrolyte[J]. Acta Metallurgica Sinica,2012,48(5):587-592.
    [13] KENDALL K,LIANG B,KENDALL M,et al. Microtubular SOFC (mSOFC) system in mobile robot applications[J]. ECS Transactions,2017,78(1):237-242.
    [14] 孟秀霞,杨乃涛,尹屹梅,等. 微管式固体氧化物燃料电池制备技术及电堆组装工艺[J]. 化工学报,2011,62(11):2977-2986. MENG X X,YANG N T,YIN Y M, et al. Fabrication techniques and stack assembling methods for micro tubular solid oxide fuel cells[J]. CIESC Journal,2011,62(11):2977-2986.
    [15] 王松林,王东生,孟广耀,等. 新型复合支撑体共烧制备致密La0.7Ca0.3Cr0.97O3-δ连接体薄膜[J]. 无机材料学报,2012,27(9):911-916. WANG S L,WANG D S,MENG G Y,et al. Fabrication of dense La0.7Ca0.3Cr0.97O3-δ interconnect membrane on novel SOFC composite support by co-firing[J]. Journal of Inorganic Materials,2012,27(9):911-916.
    [16] 杨鹏. 管式固体氧化物燃料电池制备及电化学性能研究[D]. 北京:北京理工大学,2015. YANG P.Preparation and electrochemical characterization of the tubular SOFC[D].Beijing:Beijing Institute of Technology,2015.
    [17] 杨乃涛,申义驰,延威,等. 微管式固体氧化物燃料电池阳极微结构及其性能[J]. 无机材料学报,2014,29(12):1246-1252. YANG N T,SHEN Y C,YAN W,et al. Microstructure and performance of anode for microtubular solid oxide fuel cells[J]. Journal of Inorganic Materials,2014,29(12):1246-1252.
    [18] CHICK L A,LIU J,STEVENSON J W,et al. Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite[J]. Journal of the American Ceramic Society,1997,80(8):2109-2120.
    [19] 黄加乐. 相转化聚醚砜超滤膜的孔结构形成机理研究[D].福州:福州大学,2003. HUANG J L. Study on formation mechanism of pore structure in polyethersulfone ultrafiltration membranes prepared by phase inversion[D]. Fuzhou:Fuzhou University,2003.
    [20] ZHANG X Z,HU J P,CHANG Q B,et al. Influences of internal coagulant composition on microstructure and properties of porous YSZ hollow fibre membranes for water treatment[J]. Separation and Purification Technology,2015,147:337-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700