用户名: 密码: 验证码:
200 m高度区间设加强层的钢管混凝土框架-筒体结构竖向变形差研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vertical deformation differences of approximately 200 m high concrete filled steel tubular frame-core systems with outriggers
  • 作者:王载 ; 高英赫 ; 王文宇 ; 叶垚
  • 英文作者:WANG Zai;GAO Yinghe;WANG Wenyu;YE Yao;China Architecture Design & Research Group;
  • 关键词:框架-筒体结构体系 ; 伸臂桁架 ; 竖向变形差 ; 收缩徐变 ; 后连接 ; 敏感因素
  • 英文关键词:frame-core system;;outriggers;;vertical deformation differences;;shrinkage and creep;;post-connection;;sensitive factors
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:中国建筑设计研究院有限公司;
  • 出版日期:2018-12-25
  • 出版单位:建筑结构学报
  • 年:2018
  • 期:v.39
  • 基金:中国建筑设计研究院有限公司课题(Y2015020)
  • 语种:中文;
  • 页:JZJB2018S2020
  • 页数:12
  • CN:S2
  • ISSN:11-1931/TU
  • 分类号:150-161
摘要
以3个位于设防烈度8度区,结构塔顶高度分别为191、201、221 m,设加强层的钢管混凝土框架-筒体结构为工程背景,采用MIDAS/Gen程序对竖向变形差进行了分析。采用参数化方法对影响竖向变形差的以下因素进行了敏感度分析:有限元分析的精度及加载步,钢管混凝土柱收缩徐变模型,伸臂层道数及连接时间,竖向构件截面及含钢率,混凝土相对湿度,水泥品种以及施工组织等。研究表明,较高敏感因素为钢管混凝土柱收缩徐变模型、伸臂层道数及连接时间和混凝土相对湿度。较低敏感度因素为有限元分析的精度及加载步、竖向构件截面及含钢率、水泥品种和施工组织差异。竖向变形差引起的钢梁附加应力比不超过0.15,最大附加应力出现在中、高楼层区。竖向变形差引起的伸臂桁架附加应力比在0.1~0.25之间。
        This research was conducted on three high-rise buildings in the form of concrete filled steel tubular frame-core systems with outriggers. These three buildings, which are 191 m, 201 m, and 221 m high from the ground to the structural roof, are located in the area with seismic intensity of 8 degree. MIDAS/GEN was adopted to analyze the vertical deformation differences. The sensitivity analysis was performed on the following influencing factors: the accuracy and the load steps of the finite element analysis, the shrinkage and creep analysis models for concrete filled steel tubular columns, the number of outrigger layers and their connecting time to the main structure, the cross-section and steel ratios for the vertical structural elements, the relative humidity of concrete and cement types, and the construction organization plans.The results reveal that the factors including the shrinkage and creep analysis models for concrete filled steel tubular column, the number of outrigger layers and their connecting time to the main structure, and the relative humidity of concrete have relatively higher sensitivity to the vertical deformation differences, whereas factors such as the accuracy and the load steps for finite element analysis, the variation of the cross-section and steel ratios for the vertical structural elements, cement types, and construction organization plans have lower sensitivity. The additional stress ratio caused by the vertical deformation differences does not exceed 0.15. The maximum additional stress occurs in the mid-level or high-level of the building. The superimposed stress ratio induced by the vertical deformation differences on the outrigger is within the interval between 0.1 and 0.25.
引文
[1] YI Tianyi, TONG Xiangdong. Differential column shortening effects in typical medium to high-rise buildings[C]//New Horizons and Better Practices. Reston, VA, USA: American Society of Civil Engineers, 2007: 1-10.
    [2] 傅学怡,余卫江,孙璨,等. 深圳平安金融中心重力荷载作用下长期变形分析与控制[J].建筑结构学报,2014,35(1):41-47. (FU Xueyi, YU Weijiang, SUN Can, et al. Analysis and control on long-term deformation caused by gravity of the Shenzhen Pingan Finance Center[J]. Journal of Building Structures, 2014,35(1):41-47.(in Chinese))
    [3] 梁富华,韩建强,甘海峰. 超高层框架-核心筒结构竖向变形差的实测与分析[J].建筑结构学报,2016,37(8):82-89. (LIANG Fuhua, HAN Jianqiang, GAN Haifeng. Measurement and analysis on vertical deformation difference of a super high-rise building with frame-core tube structure[J].Journal of Building Structures, 2016, 37(8): 82-89. (in Chinese))
    [4] 袁福鼎,陈志华,刘红波,等. 津湾广场9号楼超高层混合结构长期竖向变形分析[J]. 建筑结构,2016,46(24):32-37.(YUAN Fuding, CHEN Zhihua, LIU Hongbo, et al. Analysis on long-term vertical deformation of hybrid structure of No.9 super high-rise building of Jinwan Square[J]. Building Structure,2016,46(24):32-37.(in Chinese))
    [5] 陈凯,梁清淼,李沛霖,等.超高层组合结构施工过程竖向变形与危险工况分析[J]. 施工技术,2015,44(2):33-37. (CHEN Kai, LIANG Qingmiao, LI Peilin, et al. The vertical deformation and severe work condition analysis of high-rise building composite structure construction process [J]. Construction Technology,2015,44(2):33-37.(in Chinese))
    [6] 周建龙,闫锋. 超高层结构竖向变形及差异问题分析与处理[J]. 建筑结构,2007,37(5):100-103. (ZHOU Jianlong, YAN Feng. Analysis and treatment of vertical deformation difference of super high-rise building[J]. Building Structure,2007,37(5):100-103.(in Chinese))
    [7] KIM H S,CHO S H. Column shortening of concrete cores and composite columns in a tall building[J]. The Structural Design of Tall and Special Buildings, 2005,14 (2):175-190.
    [8] 王晓蓓,高振锋,伍小平,等. 上海中心大厦结构长期竖向变形分析[J].建筑结构学报,2015,36(6):108-116. (WANG Xiaobei,GAO Zhenfeng,WU Xiaoping,et al.Analysis of long-term vertical deformation of the Shanghai Tower[J].Journal of Building Structures,2015,36(6): 108-116. (in Chinese))
    [9] 韩林海,刘威.长期荷载作用对圆钢管混凝土压弯构件力学性能影响的研究[J].土木工程学报,2002,35(2):8-19. (HAN Linhai, LIU Wei. The effects of long-time loading on the behavior of concrete-filled steel tubular member[J].China Civil Engineering Journal,2002,35(2):8-19. (in Chinese))
    [10] 王玉银,耿悦,张素梅. 钢管混凝土收缩徐变模型及计算方法对比分析[J].天津大学学报,2011,44(12):1075-1082. (WANG Yuyin, GENG Yue, ZHANG Sumei. Comparison of concrete models and simplified analysis methods for concrete-filled steel tubular members[J].Journal of Tianjin University,2011,44(12):1075-1082. (in Chinese))
    [11] 张雄迪,张付奎,任庆英. 海南大厦主楼结构竖向变形分析[J].建筑结构,2016,46(增刊1):23-27.(ZHANG Xiongdi, ZHANG Fukui, REN Qingying. Vertical deformation analysis of main building of Hainan Building[J]. Building Structure, 2016, 46(Suppl.1):23-27.(in Chinese))
    [12] 马跃强. 超高层建筑施工全过程竖向变形效应研究[J].结构工程师,2014,30(3):199-204.(MA Yueqiang. Effect analysis on the vertical deformation during construction whole process of super high-rise building structures[J]. Structural Engineers,2014,30(3):199-204. (in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700