用户名: 密码: 验证码:
碳化木负载聚苯胺型微波响应催化剂用于高效5-甲基糠醛合成(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Natural wood templated polyaniline catalysts for energy efficient saccharide-HMF conversion
  • 作者:纪拓 ; 朱家华
  • 英文作者:JI Tuo;ZHU Jiahua;Intelligent Composites Laboratory,Department of Chemical and Biomolecular Engineering,the University of Akron;
  • 关键词:生物质 ; 5-甲基糠醛 ; 多相催化 ; 微波吸收 ; 可持续性
  • 英文关键词:biomass;;5-Hydroxymethylfurural;;heterogeneous catalyst;;microwave absorption;;sustainability
  • 中文刊名:LKKF
  • 英文刊名:Journal of Forestry Engineering
  • 机构:阿克伦大学智能复合材料实验室化学工程与生物分子系阿克伦大学;
  • 出版日期:2019-01-17
  • 出版单位:林业工程学报
  • 年:2019
  • 期:v.4;No.19
  • 基金:American Chemical Society Petroleum Research Fund(#55570-DNI10);; NSF(CBET-1603264);; Major State Basic Research Development Program of China(973 Program)(2013CB733501);; National Natural Science Foundation of China(21476106)~~
  • 语种:英文;
  • 页:LKKF201901029
  • 页数:8
  • CN:01
  • ISSN:32-1862/S
  • 分类号:66-73
摘要
笔者成功合成碳化木负载聚苯胺复合催化剂用于微波援助果糖催化转化反应。碳化木的表面性质经过空气氧化法和化学氧化法改性,从而提升聚苯胺在载体表面的稳定。通过利用多种表征手段,研究了碳载体和催化剂的结构演变以及聚苯胺的表面形貌、组成。通过结合空气氧化和化学氧化过程,聚苯胺的负载量从原始的1%显著提升到8%。试验结果显示,碳载体表面的羟基不仅促进了聚苯胺在表面的生长,且提高了碳载体在水中的吸波能力。在微波援助果糖催化转化反应中,复合催化剂表现了较好的吸波特性,从而提升其反应温度。在30 min内复合催化剂使得5-甲基糠醛的产率达到70%。这种整体型催化剂易于回收与再生,具有优异的重复使用性。
        Wood templated carbon/polyaniline(PANI)hybrid catalyst was successfully synthesized through microwave-assisted fructose conversion reactions.The surface property of carbonized wood was modified via a series of oxidation and carbonization processes to improve the anchoring of polyaniline on the surface.Various characterization techniques were used to study the microstructure evolution and surface composition of carbon frame as well as the polyaniline morphology and composition.By coupling air oxidation and chemical-treatment of carbon support,the PA-NI loading significantly enhanced from about 1 wt%to 8 wt%.The results showed that the presence of the hydroxyl groups on carbon support not only promoted the PANI deposition on the carbon frame but also enhanced its microwave absorption ability in the aqueous media.In the fructose dehydration reaction,the hybrid showed better microwave absorption and consequently about 36%higher reaction temperature.The hybrid catalyst achieved 70%5-hydroxymethylfurfural yield within 30-min reaction.In addition,the bulk catalyst can be easily recycled and conveniently reactivated for multiple reaction cycles.
引文
[1]ROSATELLA A A,SIMEONOV S P,FRADE R F,et al.5-hydroxymethylfurfural(HMF)as a building block platform:biological properties,synthesis and synthetic applications[J].Green Chemistry,2011,13(4):754-793.
    [2]OSATIASHTIANI A,LEE A F,BROWN D R,et al.Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural(5-hmf)production from glucose[J].Catalysis Science&Technology,2014,4(2):333-342.
    [3]WANG T,NOLTE M W,SHANKS B H.Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural(HMF)as a versatile platform chemical[J].Green Chemistry,2014,16(2):548-572.
    [4]YANG Y,HU C W,ABU-OMAR M M.Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2 O catalyst in a biphasic solvent system[J].Green Chemistry,2012,14(2):509-513.
    [5]WU Q B,YAN Y N,ZHANG Q,et al.Catalytic dehydration of carbohydrates on in situ exfoliatable layered niobic acid in an aqueous system under microwave irradiation[J].Chemsuschem,2013,6(5):820-825.
    [6]DE S,DUTTA S,SAHA B.Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water[J].Green Chemistry,2011,13(10):2859-2868.
    [7]LEY S V,FITZPATRICK D E,MYERS R M,et al.Machineassisted organic synthesis[J].Angewandte Chemie International Edition,2015,54(35):10122-10136.
    [8]MANIRE C,ZAHRAH T,OLEVSKY E A.Inherent heating instability of direct microwave sintering process:sample analysis for porous 3Y-ZrO2[J].Scripta Materialia,2017,128:49-52.
    [9]BORNHORST E R,LIU F,TANG J,et al.Food quality evaluation using model foods:a comparison study between microwaveassisted and conventional thermal pasteurization processes[J].Food and Bioprocess Technology,2017,10(7):1248-1256.
    [10]XU W,ZHOU J,SU Z,et al.Microwave catalytic effect:a new exact reason for microwave-driven heterogeneous gas-phase catalytic reactions[J].Catalysis Science&Technology,2016,6(3):698-702.
    [11]OMRI M,POURCEAU G,BECUWE M,et al.Improvement of gold-catalyzed oxidation of free carbohydrates to corresponding aldonates using microwaves[J].ACS Sustainable Chemistry&Engineering,2016,4(4):2432-2438.
    [12]WANG F,WU H Z,LIU C L,et al.Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J].Carbohydrate Research,2013,368:78-83.
    [13]SAINI P,CHOUDHARY V,SINGH B,et al.Polyaniline-mwcnt nanocomposites for microwave absorption and emi shielding[J].Materials Chemistry and Physics,2009,113(2):919-926.
    [14]LUO J,SHEN P,YAO W,et al.Synthesis,characterization,and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites[J].Nanoscale Research Letters,2016,11(1):141.
    [15]WANG L,HUANG Y,LI C,et al.Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance[J].Composites Science and Technology,2015,108:1-8.
    [16]YUAN R,WANG H,JI T,et al.Superhydrophobic polyaniline hollow spheres with mesoporous brain-like convex-fold shell textures[J].Journal of Materials Chemistry A,2015,38(3):19299-19303.
    [17]SELVAN P R A,SUBRAMANIAN E,MURUGESAN R.Polyaniline and phophotungstic acid doped composite catalyst for visible light photocatalytic degradation of phenol[J].International Journal of Applied Chemistry,2017,13(3):593-610.
    [18]NIU M,KONG X.Efficient biodiesel production from waste cooking oil using p-toluenesulfonic acid doped polyaniline as a catalyst[J].RSC Advances,2015,35(3):27273-27277.
    [19]PILEIDIS F D,TITIRICI M M.Levulinic acid biorefineries:new challenges for efficient utilization of biomass[J].Chemsuschem,2016,9(6):562-582.
    [20]TITIRICI M M,ANTONIETTI M.Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J].Chemical Society Reviews,2010,39(1):103-116.
    [21]MU W,BEN H,DU X,et al.Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds[J].Bioresource Techno-logy,2014,173:6-10.
    [22]KUMAR J,MALLAMPATI R,ADIN A,et al.Functionalized carbon spheres for extraction of nanoparticles and catalyst support in water[J].ACS Sustainable Chemistry&Engineering,2014,2(12):2675-2682.
    [23]YANG Y,CHIANG K,BURKE N.Porous carbon-supported catalysts for energy and environmental applications:a short review[J].Catalysis Today,2011,178(1):197-205.
    [24]JAIN A,BALASUBRAMANIAN R,SRINIVASAN M P.Hydrothermal conversion of biomass waste to activated carbon with high porosity:a review[J].Chemical Engineering Journal,2016,283:789-805.
    [25]JI T,CHEN L,MU L,et al.In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric:exceptional catalyst for nitroaromatics reduction[J].Applied Catalysis B:Environmental,2016,182:306-315.
    [26]ZHU J,WEI S,ZHANG L,et al.Polyaniline-tungsten oxide metacomposites with tunable electronic properties[J].Journal of Materials Chemistry,2011,21(2):342-348.
    [27]JI T,CAO W,CHEN L,et al.Confined molecular motion across liquid/liquid interfaces in a triphasic reaction towards freestanding conductive polymer tube arrays[J].Journal of Materials Chemistry A,2016,4(17):6290-6294.
    [28]JI T,CHEN L,SCHMITZ M,et al.Hierarchical macrotube/mesopore carbon decorated with mono-dispersed Ag nanoparticles as a highly active catalyst[J].Green Chemistry,2015,17(4):2515-2523.
    [29]SHROTRI A,KOBAYASHI H,FUKUOKA A.Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose[J].Chemsuschem,2016,9(11):1299-1303.
    [30]JI T,TU R,MU L,et al.Structurally tuning microwave absorption of core/shell structured cnt/polyaniline catalysts for energy efficient saccharide-hmf conversion[J].Applied Catalysis B:Environmental,2018,220:581-588.
    [31]PUTHIARAJ P,CHO S M,LEE Y R,et al.Microporous covalent triazine polymers:efficient friedel-crafts synthesis and adsorption/storage of CO2 and CH4[J].Journal of Materials Chemistry A,2015,3(13):6792-6797.
    [32]WANG Y,ZOU H,ZENG S,et al.A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO2 adsorption[J].Chemical Communications,2015,51(62):12423-12426.
    [33]DASSANAYAKE R S,GUNATHILAKE C,JACKSON T,et al.Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths[J].Cellulose,2016,23(2):1363-1374.
    [34]LIANG S,LI G,TIAN R.Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation[J].Journal of Materials Science,2016,51(7):3513-3524.
    [35]PARK Y S,IM M H,HAM K S,et al.Quantitative assessment of the main antioxidant compounds,antioxidant activities and ftir spectra from commonly consumed fruits,compared to standard kiwi fruit[J].LWT-Food Science and Technology,2015,63(1):346-352.
    [36]LIN-VIEN D,COLTHUP N B,FATELEY W G,et al.The handbook of infrared and raman characteristic frequencies of organic molecules[M].Netherlands:Elsevier,1991.
    [37]JI T,CHEN L,MU L,et al.Heterogeneous nucleation/growth of silver nanoparticles onto oxygenated mesoporous carbon:alcohol effect and catalytic property[J].Catalysis Communications,2016,77:65-69.
    [38]MATTEVI C,KIM H,CHHOWALLA M.A review of chemical vapour deposition of graphene on copper[J].Journal of Materials Chemistry,2011,21(10):3324-3334.
    [39]JI T,TU R,MU L,et al.Enhancing energy efficiency in saccharideHMF conversion with core/shell structured microwave responsive catalysts[J].ACS Sustainable Chemistry&Engineering,2017,5(5):4352-4358.
    [40]SCHAUB R,THOSTRUP P,LOPEZ N,et al.Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)[J].Physical Review Letters,2001,87(26):266104.
    [41]ANTONETTI C,MELLONI M,LICURSI D,et al.Microwaveassisted dehydration of fructose and inulin to hmf catalyzed by niobium and zirconium phosphate catalysts[J].Applied Catalysis B-Environmental,2017,206:364-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700