用户名: 密码: 验证码:
一种带有重心调节机构的作业型飞行机器人建模与控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Control of an Aerial Manipulator with a Gravity Center Adjusting Mechanism
  • 作者:连杰 ; 宋光明 ; 王营华 ; 孙慧玉 ; 宋爱国
  • 英文作者:LIAN Jie;SONG Guangming;WANG Yinghua;SUN Huiyu;SONG Aiguo;School of Instrument Science and Engineering, Southeast University;
  • 关键词:飞行机器人 ; 重心调节控制 ; 旋翼飞行机械臂 ; 空中作业 ; 四旋翼飞行器
  • 英文关键词:aerial manipulator;;gravity center adjusting control;;rotor-flying manipulator;;aerial manipulation;;quadrotor
  • 中文刊名:JQRR
  • 英文刊名:Robot
  • 机构:东南大学仪器科学与工程学院;
  • 出版日期:2018-06-22 17:17
  • 出版单位:机器人
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(61375076)
  • 语种:中文;
  • 页:JQRR201901001
  • 页数:8
  • CN:01
  • ISSN:21-1137/TP
  • 分类号:3-10
摘要
针对作业型飞行机器人完成抓取、搬运等任务时所产生的重心偏移问题,设计了一种带有重心调节机构的作业型飞行机器人,并提出了一种重心调节控制策略.该方法通过对作业装置中的机械臂进行运动学推导,动态计算出机械臂运动时复合系统重心位置的改变量,利用力矩平衡方程计算得到调节机构所需转动的角度,从而实现对复合系统重心的调节.为验证所提出控制策略的有效性,在Matlab仿真环境中,分别研究了有无重心调节控制时机械臂运动对复合系统重心轨迹和定点悬停位姿的影响.通过户外实物实验测试了飞行机器人搭载负载情况下,调节机构在定点悬停作业时的稳定效果.实验结果表明,在所述控制策略下,重心调节机构能够在飞行机器人作业过程中实时调节复合系统重心的偏移量,验证了控制策略的有效性.
        To eliminate the gravity center deviation of the aerial manipulator in grasping and transporting tasks, an aerial manipulator with a gravity center adjusting mechanism is designed and a control strategy for adjusting the gravity center is proposed. The strategy dynamically calculates the offset of gravity center of the combined system when the robotic arm moving by kinematic derivation of the robotic arm in manipulation system, and rotates the adjusting mechanism by the angles calculated according to the moment equilibrium equations to adjust the gravity center of the combined system. In order to validate the effectiveness of the proposed control strategy, simulations are performed in Matlab environment to study the influence of the robotic arm movement on the curve of gravity center of the combined system and the hovering pose with and without the gravity center adjusting control. Outdoor flights are performed to test the effectiveness of the adjusting mechanism for stabilizing the system when hovering with the payload. Experimental results demonstrate that the gravity center adjusting mechanism can adjust the offset of gravity center in real time when the aerial manipulator performs tasks with the proposed control strategy, and the effectiveness of the control strategy is validated.
引文
[1]杨斌,何玉庆,韩建达,等.作业型飞行机器人研究现状与展望[J].机器人,2015,37(5):628-640.Yang B,He Y Q,Han J D,et al.Survey on aerial manipulator systems[J].Robot,2015,37(5):628-640.
    [2]Mellinger D,Lindsey Q,Shomin M,et al.Design,modeling,estimation and control for aerial grasping and manipulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2011:2668-2673.
    [3]Pounds P E I,Bersak D R,Dollar A M.Grasping from the air:Hovering capture and load stability[C]//IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2011:2491-2498.
    [4]Korpela C M,Danko T W,Oh P Y.MM-UAV:Mobile manipulating unmanned aerial vehicle[J].Journal of Intelligent&Robotic Systems,2012,65(1-4):93-101.
    [5]Kim S,Choi S,Kim H J.Aerial manipulation using a quadrotor with a two DoF robotic arm[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2013:4990-4995.
    [6]Korpela C,Orsag M,Danko T,et al.Insertion tasks using an aerial manipulator[C]//IEEE International Conference on Technologies for Practical Robot Applications.Piscataway,USA:IEEE,2014.
    [7]Korpela C,Orsag M,Oh P.Towards valve turning using a dualarm aerial manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2014:3411-3416.
    [8]Tsukagoshi H,Hamada T,Watanabe M,et al.Aerial manipulator aimed for door opening mission[C]//IEEE International Symposium on Safety,Security,and Rescue Robotics.Piscataway,USA:IEEE,2014.
    [9]Kim S,Seo H,Kim H J.Operating an unknown drawer using an aerial manipulator[C]//IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2015:5503-5508.
    [10]Pounds P E I,Bersak D R,Dollar A M.Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control[J].Autonomous Robots,2012,33(1/2):129-142.
    [11]Kutia J R,Stol K A,Xu W L.Canopy sampling using an aerial manipulator:A preliminary study[C]//International Conference on Unmanned Aircraft Systems.Piscataway,USA:IEEE,2015:477-484.
    [12]Kutia J R,Stol K A,Xu W L.Initial flight experiments of a canopy sampling aerial manipulator[C]//International Conference on Unmanned Aircraft Systems.Piscataway,USA:IEEE,2016:1359-1365.
    [13]Ruggiero F,Trujillo M A,Cano R,et al.A multilayer control for multirotor UAVs equipped with a servo robot arm[C]//IEEEInternational Conference on Robotics and Automation.Piscataway,USA:IEEE,2015:4014-4020.
    [14]Yang B,He Y Q,Han J D,et al.Rotor-flying manipulator:Modeling,analysis,and control[J].Mathematical Problems in Engineering,2014:No.492965.
    [15]钟杭,王耀南,李玲,等.旋翼飞行机械臂建模及动态重心补偿控制[J].控制理论与应用,2016,33(3):311-320.Zhong H,Wang Y N,Li L,et al.Rotor-flying manipulator modeling and control with dynamic compensation for gravity offset[J].Control Theory&Applications,2016,33(3):311-320.
    [16]Meng X D,He Y Q,Gu F,et al.Dynamics modeling and simulation analysis for rotorcraft aerial manipulator system[C]//36th Chinese Control Conference.Piscataway,USA:IEEE,2017:1156-1161.
    [17]Lee H,Kim H J.Estimation,control,and planning for autonomous aerial transportation[J].IEEE Transactions on Industrial Electronics,2017,64(4):3369-3379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700