用户名: 密码: 验证码:
磁致伸缩换能器谐振腔声场分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sound field analysis of resonator in magnetostrictive transducer
  • 作者:汪建新 ; 孟楠 ; 晋康 ; 李东
  • 英文作者:Wang Jianxin;Meng Nan;Jin Kang;Li Dong;School of Mechanical Engineering,Inner Mongolia University of Science and Technology;
  • 关键词:磁致伸缩换能器 ; 驻波波形 ; 谐振腔声压 ; 热声制冷
  • 英文关键词:magnetostrictive transducer;;standing wave waveform;;resonant cavity sound pressure;;thermoacoustic refrigeration
  • 中文刊名:XXGY
  • 英文刊名:Modern Manufacturing Engineering
  • 机构:内蒙古科技大学机械工程学院;
  • 出版日期:2018-12-18
  • 出版单位:现代制造工程
  • 年:2018
  • 期:No.459
  • 基金:国家自然科学基金资助项目(51365033)
  • 语种:中文;
  • 页:XXGY201812002
  • 页数:5
  • CN:12
  • ISSN:11-4659/TH
  • 分类号:7-11
摘要
针对磁致伸缩换能器驱动谐振腔声场波形,在理论分析管中驻波声场的基础上,利用有限元软件ATILA进行磁-机耦合与气-固耦合分析,得到换能器通入1 000~6 000 Hz六组交变电流激励下谐振腔产生的声压值大小;提取对应六组交变电流的换能器辐射板位移大小,得到了谐振腔内声压值随换能器辐射板位移值的变化规律。结合实验发现在通入换能器电流强度不变的情况下,可以通过增大电流频率的方式增大谐振腔内声压值,从而提高热声制冷机的制冷能力。利用实验室热声制冷机对仿真结果进行验证,发现实验结果与模拟结果基本一致,验证了模拟结果的准确性,同时也为实际工况选择提供了依据。
        Aiming at the acoustic field waveform of the resonator driven by magnetostrictive transducer,based on the theoretical analysis of the standing wave field in the theoretical analysis tube,the finite element software ATILA was used to analyze the magneto-mechanical coupling and gas-solid coupling analysis,and the transconductance was obtained by simulating the acoustic field waveform of the resonant cavity driven by the magnetostrictive transducer. The magnitude of the sound pressure produced by the resonant cavity under the six alternating current excitation of 1 000 ~ 6 000 Hz is obtained. The displacement of the radiator plate of the transducer with six alternating currents is extracted and the sound pressure value of the resonator is obtained. Numerical Curve of displacement value of radiation plate. It is found that the temperature of the resonant cavity can be increased by increasing the current frequency,so as to improve the cooling capacity of the thermoacoustic refrigerator. The experimental results are in good agreement with the simulation results,which verifies the accuracy of the simulation results and also provides an accurate basis for the actual working conditions.
引文
[1]刘小丹.制冷技术的发展状况及其发展趋势[J].商,2015(24):296.
    [2]林书玉.功率超声振动系统的研究进展[J].应用声学,2009,28(1):10-19.
    [3]郭浩.超磁致伸缩换能器的谐振频率计算与结构设计[D].天津:河北工业大学,2012.
    [4]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2004.
    [5] ALLESINA G. An experimental analysis of a stand-alone standing-wave thermoacoustic refrigerator[J]. International Journal of Energy&Environmental Engineering,2014,5(4):1-8.
    [6]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [7]朱厚卿.稀土超磁致伸缩材料的应用[J].应用声学,1998(5):3-10.
    [8]汪建新,尹潇靓,唐岳,等.基于ANSYS的热声制冷机谐振管内声场仿真分析[J].制造业自动化,2015,37(18):76-79.
    [9] BIWA T,UEDA Y,YAZAKI T,et al. Thermodynamical mode selection rule observed in thermoacoustic oscillations[J].Epl,2007,60(3):363-368.
    [10]王军,吴锋,杨志春,等.热声谐振管压比影响因素的数值模拟[J].武汉工程大学学报,2010,32(12):80-83.
    [11]汪建新,晋康,常云龙,等.基于ΔE及阶跃效应的T-D棒位移输出仿真分析[J].组合机床与自动化加工技术,2017(1):54-56.
    [12]胡鹏.高频微型声驱动热声制冷机的理论探索与实验研究[D].北京:中国科学院理化技术研究所,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700