用户名: 密码: 验证码:
超磁致伸缩执行器温升分析及温控方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of temperature rise and its control method of giant magnetostrictive actuator
  • 作者:林丞 ; 葛津铭 ; 陈彤 ; 刘劲松 ; 韩月 ; 刘芮彤 ; 申岩
  • 英文作者:LIN Cheng;GE Jin-ming;CHEN Tong;LIU Jing-song;HAN Yue;LIU Rui-tong;SHEN Yan;School of Electrical Engineering and Automation, Harbin Institute of Technology;State Grid Liaoning Electric Power Reserch Institute;
  • 关键词:超磁致伸缩执行器 ; 强制水冷 ; 有限元模拟 ; 电流传感器 ; 温度
  • 英文关键词:giant magnetostrictive material;;forced water cooling;;FEA;;current sensor;;temperature
  • 中文刊名:CXCQ
  • 英文刊名:Journal of Magnetic Materials and Devices
  • 机构:哈尔滨工业大学电气工程及自动化学院;国网辽宁省电力有限公司电力科学研究院;
  • 出版日期:2018-05-15
  • 出版单位:磁性材料及器件
  • 年:2018
  • 期:v.49;No.238
  • 基金:国家电网公司科学技术项目(0711-150TL173)
  • 语种:中文;
  • 页:CXCQ201803005
  • 页数:6
  • CN:03
  • ISSN:51-1266/TN
  • 分类号:17-22
摘要
对于稀土超磁致伸缩材料设计的传感和驱动一体化装置,由于运行的工作条件所致,传感材料会受到温度的影响。主要对装置的设计进行优化,采用强制水冷装置,分别设置单水冷腔和双水冷腔来减少温升这一因素对装置的影响,来优化装置的性能。并且通过有限元模拟来分析水冷装置对于GMA内部温度分布的影响来评估水冷装置的作用。从温度云图可以发现,单水冷腔相较于没有设置冷却结构的装置来说温度明显下降,而双水冷腔的温度相较于单水冷腔来说又进一步下降,说明这种优化结构具有很大的应用潜力。
        The magnetostrictive actuators baseed on giant magnetostrictive material has its temperature problem due to working conditions. In this paper, the design of the device is optimized, and the effects of temperature on the devices is reduced by using two different forced water cooling devices to optimize the performance of the device. And the effect of water cooling device is evaluated by finite element method to simulate the influence of water cooling device on the temperature distribution inside GMA. Through software simulation, we can evaluate the temperature of the three devices adopted in this paper. Compared with the one without water cooling device, the one set up with single water cooling cavity's temperature has decreased a lot. And the one with double water cooling cavity's temperature has decreased even more,which indicates the construction in this essay has its potential in use.
引文
[1]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].机电工程,2004,21(4):55-59.
    [2]贾宇辉,谭久彬.基于超磁致伸缩材料的微位移驱动器特性研究[J].中国机械工程,1999,10(11):1213-1215.
    [3]方紫剑,王传礼.超磁致伸缩材料的应用现状[J].煤矿机械,2006,27(5):725-727
    [4]李国平,陈子辰.超磁致伸缩驱动器输出特性的实验研究[J].兵工学报,2005,26(1):136-139.
    [5]任芝,李松涛,刘何燕,等.Prx Tb0.2Dy0.8-xFe1.85C0.05合金的结构和磁致伸缩[J].磁性材料及器件,2013,44(5):6-7.
    [6]孙宝元.现代执行器技术[M].长春:吉林大学出版社,2003.
    [7]Yamamoto Y,Eda H,Shimizu J.Application of giant magnetostrictive materials to positioning actuators[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics,1999.Proceedings.IEEE,1999:215-220.
    [8]夏春林,丁凡,陶国良.超磁致伸缩电—机械转换器热变形补偿试验研究[J].中国机械工程,1999,10(5):563-56.
    [9]孙永人.相变温控实验及在航天器上应用[J].导弹与航天运载技术,1991,5(8):62-66.
    [10]严自力,王宏升.温控相变材料[J].中国个体防护装备,2001,1(1):23-24.
    [11]贾振元,杨兴,郭东明,等.超磁致伸缩材料微位移执行器的设计理论及方法[J].机械工程学报,2001,37,37(11):46-49.
    [12]Eda H,Ohmura E,Sahashi M,et al.Ultraprecise machine tool equipped with a giant magnetostriction actuator—development of new materials,Tbx Dy 1-x(Fey Mn 1-y)n,and their application[J].CIRP Annals-Manufacturing Technology,1992,41(1):421-424.
    [13]Clark A E,Wunfogle M.Modern magnetostrictive materials:classical and nonclassical alloys[J].Proc Spie,2002,4699:421-436.
    [14]刘德忠,费仁元,李剑锋,等.磁致伸缩微动驱动器的研制[J].北京工业大学学报,2002,28(4):405-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700