用户名: 密码: 验证码:
基于RS和GIS的湘江长沙段水域风险评估方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on risk assessment method of Changsha section of Xiangjiang based on RS and GIS
  • 作者:叶帮玲 ; 杨波 ; 曾扬 ; 司云瑞 ; 胡可 ; 唐涛 ; 李永刚 ; 李景保 ; 于丹丹
  • 英文作者:YE Bangling;YANG Bo;ZENG Yang;SI Yunrui;HU Ke;TANG Tao;LI Yonggang;LI Jingbao;YU DANDan;GIS research center,Geospatial Key Laboratory of big data mining and Application,College of resources and Environmental Sciences,Hunan Normal University;Water Resources Department of Hunan Province;
  • 关键词:遥感 ; 地理信息系统 ; 水域风险评估 ; 水质反演 ; 湘江长沙段
  • 英文关键词:remote sensing;;geographic information system;;water risk assessment;;water qualityinversion;;Changsha section of Xiangjiang
  • 中文刊名:XBSZ
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:湖南师范大学GIS研究中心地理空间大数据挖掘与应用省重点实验室资源与环境科学学院;湖南省水利厅;
  • 出版日期:2018-12-15
  • 出版单位:水资源与水工程学报
  • 年:2018
  • 期:v.29;No.142
  • 基金:国家自然科学基金项目(41071067);; 湖南省水利厅专项项目
  • 语种:中文;
  • 页:XBSZ201806006
  • 页数:7
  • CN:06
  • ISSN:61-1413/TV
  • 分类号:44-49+55
摘要
利用2016年9景Landsat影像以及相应时期的实测水质参数数据对湘江长沙段进行水质参数的遥感反演,并引入灾害风险中的危险性及易损性相关概念,通过Arc GIS软件的空间分析功能对湘江长沙段水域风险进行了分析。结果表明:高风险区主要分布于湘江的两岸,并且位于风险源较密集的区域;较高风险区主要位于湘江的两侧以及饮用水源区桥梁所处的位置;中等风险区主要分布于饮用水源区;较低风险区和低风险区主要位于过渡区以及景观娱乐用水区。在传统的水域风险评估中引入遥感技术使得评估方法更为多样且影响因子考虑的更为全面。研究结果对于河流水利管理部门进行水域风险评估、相关水域风险预警与整治方案的制定具有一定的参考价值。
        Using the 9 Landsat images in 2016 and the measured water quality data of the corresponding period,the water quality parameters were retrieved from Changsha section of Xiangjiang,and the risk and vulnerability related concepts in disaster risk were introduced,and the water risk in the Changsha section of Xiangjiang was analyzed with the spatial analysis function of the ArcGIS software. The results showed that the high risk areas are mainly distributed on both sides of Xiangjiang,and are located in the areas with dense risk sources,and the higher risk areas are mainly located on both sides of Xiangjiang and the location of the bridge in the drinking water source area,the middle risk area is mainly distributed in the drinking water source area; the lower risk area and the low risk area are mainly located in the transitional area and the recreational water consumption area. The introduction of remote sensing technology in traditional water risk assessment makes the assessment methods more diverse and the impact factors more comprehensive. The results of this study provide a certain reference value for river water manage-ment departments to carry out water risk assessment,related waters risk early warning and the formulation of regulation scheme.
引文
[1]樊庆锌,杨先兴,邱微.松花江哈尔滨段城市水环境质量评价[J].中国环境科学,2014,34(9):2292-2298.
    [2]孙树青,胡国华,王勇泽,等.湘江干流水环境健康风险评价[J].安全与环境学报,2006,6(2):12-15.
    [3]杜为静,李淑敏,李红,等.汉石桥湿地水质参数光谱分析与遥感反演[J].光谱学与光谱分析,2010,30(3):757-761.
    [4]朱吉生,叶水根,朱琴,等.基于遥感ET的北京房山区水资源平衡分析[J].节水灌溉,2009(11):50-52+59.
    [5]祝令亚.湖泊水质遥感监测与评价方法研究[D].北京:中国科学院遥感应用研究所,2006.
    [6]IWASHITA K,KUDOH K,FUJII H,et al. Satellite analysis for water flow of Lake Inbanuma[J]. Advances in Space Research,2004,33(3):284-289.
    [7]胡耀躲,窦同宇,杨波.基于GOCI影像反演湖泊悬浮物和叶绿素a含量的研究述评[J].水资源与水工程学报,2017,28(2):26-32+39.
    [8] MASKREY A. Ddisaster mitigation:a community based approach[M]. Oxford:Oxfam,1989.
    [9]刘引鸽,史鹏英,张妍.渭河干流陕西段河流水质污染风险评价[J].水资源与水工程学报,2015,26(3):51-54.
    [10]武暕,郭飞.辽宁省入海河流及近岸海域风险评估[J].环境工程技术学报,2018,8(1):65-70.
    [11]刘珍,文彦君,韩梅,等.人类活动影响下的陕西省水资源脆弱性评价[J].水资源与水工程学报,2017,28(3):82-86.
    [12]封丽,程艳茹,封雷,等.三峡库区主要水域典型抗生素分布及生态风险评估[J].环境科学研究,2017,30(7):1031-1040.
    [13]严清,訾成方,张怡昕,等.重庆主城区水域典型Ph ACs污染水平及生态风险评估[J].环境科学研究,2013,26(11):1178-1185.
    [14]王林,白洪伟.基于遥感技术的湖泊水质参数反演研究综述[J].全球定位系统,2013,38(1):57-61+72.
    [15]付宇,韦玉春,王国祥.水质参数的遥感反演和遥感监测[J].环境监控与预警,2010,2(6):27-30.
    [16]刘灿德,何报寅.水质遥感监测研究进展[J].世界科技研究与发展,2005,27(5):40-44.
    [17]顾清.浙江省饮用水水库水质演变及风险评价研究[D].杭州:浙江大学,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700