用户名: 密码: 验证码:
核电装备用奥氏体不锈钢的高温本构模型及动态再结晶
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constitutive Equation and Dynamic Recrystallization Behavior of 316L Austenitic Stainless Steel for Nuclear Power Equipment
  • 作者:程晓农 ; 桂香 ; 罗锐 ; 杨雨童 ; 陈乐利 ; 王威 ; 王稳
  • 英文作者:CHENG Xiaonong;GUI Xiang;LUO Rui;YANG Yutong;CHEN Leli;WANG Wei;WANG Wen;School of Materials Science and Engineering,Jiangsu University;
  • 关键词:316L不锈钢 ; 应力-应变曲线 ; 热变形 ; 动态再结晶
  • 英文关键词:316L stainless steel;;stress-strain curves;;hot deformation;;dynamic recrystallization
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:江苏大学材料科学与工程学院;
  • 出版日期:2019-06-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:“十二五”国家高技术研究发展计划(863计划)重大项目(2012AA03A501)~~
  • 语种:中文;
  • 页:CLDB201911002
  • 页数:7
  • CN:11
  • ISSN:50-1078/TB
  • 分类号:6-12
摘要
采用热模拟压缩实验研究核电装备用316L奥氏体不锈钢在变形温度为900~1 100℃、应变速率为0.01~5 s~(-1)时的高温变形行为。根据压缩实验数据绘制流变应力曲线;基于Arrhenius关系并考虑应变量因素,建立耦合应变量因素的改进型本构方程;结合光学显微镜(OM)观察材料变形过程中微观组织的特征;根据加工硬化率-流动应力曲线确定316L不锈钢的动态再结晶临界应变并基于Avrami方程建立其动态再结晶体积分数模型。结果表明:在316L不锈钢热变形过程中,较低的温度和较快的应变速率对应的流变应力也较大;耦合应变量因素的本构模型预测316L不锈钢的流变应力,预测值与实验值的相关系数为0.986 88,平均相对误差仅4.6%,该模型能较好地预测316L不锈钢在热变形过程中的变形抗力。316L不锈钢易在高温、低速的加工条件下发生动态再结晶行为,其动态再结晶体积分数与应变呈S形变化。该模型所得的预测值与实验数据之间的相关性较好,能很好地预测316L不锈钢在热加工过程中发生动态再结晶的体积分数。
        The hot deformation behavior of 316 L austenitic stainless steel used in nuclear power equipment was studied by hot compression tests in the temperature range of 900—1 100 ℃,and in the strain rate range of 0.01—5 s-1. According to the data of hot compressive experiment,the flow stress curves of 316 L under different deformation conditions were plotted. The constitutive model considering the compensation of strain for predicting the flow stress of 316 L under all test conditions was developed on the basis of Arrhenius-type equation. The microstructural evolution of316 L during deformation was observed via an optical microscope. The critical strain of dynamic recrystallization of 316 L stainless steel is identified based on the work hardening rate versus flow stress curves. The DRX kinetics for 316 L can be represented in the form of Avrami equation. The results show that either decreasing deformation temperature or increasing strain rate makes the flow stress level reduce remarkably. The accuracy of the developed model was evaluated using standard statistical parameters such as correlation coefficient and average absolute relative error. It suggested that this developed constitutive equation could accurately predict high temperature flow behaviors of 316 L.It is found that the DRX mainly occurred at high strain rates and high temperatures. The DRX volume fraction increased towards 1.0 with an increase in strain in terms of the S-shape and the predicted volume fraction of new grains based on the developed model agrees well with the experimental results.
引文
1 Zhao M,Chai L J,Yuan S S,et al.Journal of Chongqing University of Technology (Natural Science),2018,32(1),135(in Chinese).赵漫,柴林江,袁珊珊,等.重庆理工大学学报(自然科学),2018,32(1),135.
    2 Li N,Shi S,Luo J,et al.Surface & Coatings Technology,2017,309,227.
    3 Zi?tala M,Durejko T,Polański M,et al.Materials Science & Enginee-ring A,2016,677,1.
    4 Shi J,Zhang W Q,Guo J.Materials Review B:Research Papers,2010,24(2),82(in Chinese).是晶,张伟强,郭金.材料导报:研究篇,2010,24(2),82.
    5 Wu H,Wen S P,Huang H,et al.Materials Science & Engineering A,2016,651,415.
    6 Pu E,Zheng W,Xiang J,et al.Acta Metallurgica Sinica,2014,27(2),313.
    7 Song R P,Xiang J Y,Liu L Y,et al.Materials for Mechanical Enginee-ring,2010,34(6),85(in Chines).宋仁伯,项建英,刘良元,等.机械工程材料,2010,34(6),85.
    8 Pilehva F,Zarei-Hanzaki A,Ghambari M,et al.Materials & Design,2013,51(5),457.
    9 Sun C Y,Luan J D,Liu C.Acta Metallurgica Sinica,2012,48(7),853(in Chinese).孙朝阳,栾京东,刘赓,等.金属学报,2012,48(7),853.
    10 Wu Y,Yi N,Qiao H J,et al.Rare Metal Materials & Engineering,2013,42(10),2117(in Chinese).武宇,宜楠,乔慧娟,等.稀有金属材料与工程,2013,42(10),2117.
    11 Luo R,Cheng X N,Xu G F,et al.Journal of Functional Materials,2016,47(s1),89(in Chinese).罗锐,程晓农,徐桂芳,等.功能材料,2016,47(s1),89.
    12 Xiang J Y,Song R P,Ren P D.Chinese Journal of Engineering,2009,31(12),1555(in Chinese).项建英,宋仁伯,任培东.工程科学学报,2009,31(12),1555.
    13 Zener C,Hollomon J H.Journal of Applied Physics,1944,15(1),22.
    14 Fang X L,Jiang D J.Journal of Materials Science,2011,46(10),3646.
    15 Suzuki A,Pollock T M.Acta Materialia,2008,56(6),1288.
    16 Kugler G,Turk R.Acta Materialia,2004,52(15),4659.
    17 Nkhoma R,Siyasiya C W,Stumpf W E.Journal of Alloys & Compounds,2014,595(13),103.
    18 Wang C J,Han F,Zheng W J,et al.Journal of Iron and Steel Research (International),2013,20(10),107.
    19 He A,Xie G,Zhang H,et al.Materials & Design,2014,56(4),122.
    20 Luo R,Cheng X N,Xu G F,et al.Chinese Journal of Rare Metals,2017(2),132(in Chinese).罗锐,程晓农,徐桂芳,等.稀有金属,2017(2),132.
    21 Xu Z H,Li H,Li M Q.The Chinese Journal of Nonferrous Metals,2017,27(8),1551(in Chinese).许赵华,李宏,李淼泉.中国有色金属学报,2017,27(8),1551.
    22 Poliak E I,Jonas J J.Acta Materialia,1996,44(1),127.
    23 Momeni A,Dehghani K.Metallurgical & Materials Transactions A,2011,42(7),1925.
    24 Zhang C,Zhang L,Shen W,et al.Materials & Design,2016,90,804.
    25 Wei H L,Liu G Q,Xiao X,et al.Materials Science & Engineering A,2013,573(3),215.
    26 Lv B J,Peng J,Wang Y J,et al.Materials & Design,2014,53(1),357.
    27 Zou D N,Liu R,Han Y,et al.Materialsence & Technology,2014,30(4),411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700