用户名: 密码: 验证码:
热碱-分步酶水解-厌氧消化工艺处理秸秆畜粪混合物料及其甲烷高值化条件
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance of Treating Straw and Animal Manure Mixture by an Integrated Process of Thermo-alkali-bi-enzyme Hydrolysis-anaerobic Digestion and Conditions of High Methane Yield
  • 作者:卞爱琴 ; 远野 ; 张璐璐 ; 付强 ; 陈天明 ; 何磊 ; 丁成 ; 王爱杰
  • 英文作者:BIAN Ai-qin;YUAN Ye;ZHANG Lu-lu;FU Qiang;CHEN Tian-ming;HE Lei;DIND Cheng;WANG Ai-jie;School of Environmental Science and Engineering,Yancheng Institute of Technology;Key Laboratory of Environmental Biotechnology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;Jiangsu Keyida Environmental Science and Technology Co.,Ltd.;
  • 关键词:秸秆畜粪 ; 混合物料 ; 碱预处理 ; 酶水解 ; 厌氧消化 ; 甲烷产率
  • 英文关键词:straw and animal manure;;mixture;;thermo-alkali pretreatment;;enzyme hydrolysis;;anaerobic digestion;;methane yield
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:盐城工学院环境科学与工程学院;中国科学院生态环境研究中心环境生物技术重点实验室;江苏科易达环保科技有限公司;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51608467);; 盐城市农业科技创新专项引导资金项目(yk2016030);; 江苏省普通高校研究生科研创新计划项目(SJCX17-YG02)
  • 语种:中文;
  • 页:HJKZ201902062
  • 页数:8
  • CN:02
  • ISSN:11-1895/X
  • 分类号:493-500
摘要
为获得秸秆畜粪混合物料在厌氧消化过程中的甲烷高值化产出,提出了一种新型"热碱-分步酶水解-厌氧消化"组合工艺.以玉米秸秆和牛粪混合物料作为实验对象,考察物料中纤维素、半纤维素、蛋白质获得高溶出效率的热碱预处理条件;分步投加纤维素酶和蛋白酶的剂量及水解时间;热碱预处理后的混合浆液和热碱-酶水解后的混合水解液厌氧消化甲烷产率及产气周期.结果表明,在80℃和0. 5%Na OH碱用量条件下,纤维素、半纤维素和蛋白质的溶出效率(%TS)最高,与未预处理相比(对照组),分别提高24. 84%、12. 24%和8. 92%;分步酶水解的过程和条件为:先投加80 U·g-1的纤维素酶水解18 h,再投加20 U·g-1的蛋白酶水解4 h,纤维素和蛋白质的水解效率可分别达到74. 08%和74. 01%,获得的水解液中糖类提高12~32倍;在厌氧消化阶段,热碱-酶水解后的水解液甲烷产量最高值可达750 m L·h-1,产气周期50 h,相比于热碱预处理后的底物消化(对照组),产甲烷效率提高了约14倍,产气周期缩短了约17 d.热碱-酶水解预处理能有效地解除混合物料厌氧消化过程的水解限速,研究结果可以为开发高效的农业废弃物能源高值化利用技术提供参考依据.
        To obtain a high methane yield during the anaerobic digestion of a straw and animal manure mixture,an integrated process of thermo-alkali-bi-enzyme hydrolysis-anaerobic digestion was proposed. A mixture of corn straw and cattle manure was selected as the experimental object. A higher dissolution efficiency of cellulose,hemicellulose,and protein in the thermo-alkali pretreatment,dosages and hydrolysis times of cellulase and protease in the bi-enzyme hydrolysis,and the methane yield and biogas production cycle in the anaerobic digestion with mixed slurry and hydrolysates were investigated respectively. The results showed that the dissolution efficiency( % TS) of cellulose( 24. 84%),hemicellulose( 12. 24%),and protein( 8. 92%) reached their highest levels at 0. 5% Na OH and80℃( compared with the control group). The bi-enzyme hydrolysis process and conditions were as follows: cellulase hydrolysis was 80 U·g-1 and 18 h,and protease hydrolysis was 20 U·g-1 and 4 h. The hydrolysis efficiency of cellulose and protein reached 74. 08%and 74. 01%,respectively. The sugars in the hydrolysate were increased by 12-32 times. During anaerobic digestion,the maximum yield of methane from hydrolysate after thermo-alkali-bi-enzyme hydrolysis was 750 m L·h-1,and the gas production cycle was 50 h.Compared with the mixture after the thermo-alkali pretreatment,the methane production efficiency of the mixed hydrolysate after thermo-alkali-bi-enzyme hydrolysis was increased by 14 times,and the gas production cycle was noticeably shortened by 17 d. The results indicated that the thermo-alkali and enzyme hydrolysis pretreatment could effectively accelerate the hydrolysis rate in the anaerobic digestion with the mixture. The results of this study provide a new reference for developing efficient technology of high-value energy utilization of agricultural waste.
引文
[1] Pierie F,Benders R M J,Bekkering J,et al. Lessons from spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands[J]. Applied Energy,2016,176:233-244.
    [2] Zheng Z H,Liu J H,Yuan X F,et al. Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion[J]. Applied Energy,2015,151:249-257.
    [3] Monlau F,Sambusiti C,Antoniou N,et al. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process[J]. Applied Energy,2015,148:32-38.
    [4] Zheng Y,Zhao J,Xu F Q,et al. Pretreatment of lignocellulosic biomass for enhanced biogas production[J]. Progress in Energy and Combustion Science,2014,42:35-53.
    [5] Wei Y F,Li X J,Yu L,et al. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment[J]. Bioresource Technology,2015,198:431-436.
    [6]甘荣,葛明民,刘勇迪,等.活性炭在中高温条件下对玉米秸秆厌氧发酵的影响[J].环境科学,2017,38(6):2607-2616.Gan R,Ge M M,Liu Y D,et al. Effect of activated carbon addition on the anaerobic fermentation of corn straw in mesophilic and thermophilic conditions[J]. Environmental Science,2017,38(6):2607-2616.
    [7]中华人民共和国农业部.中国农业统计资料2015[M].北京:中国农业出版社,2016.
    [8] Tsapekos P,Kougias P G,Treu L,et al. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production[J].Applied Energy,2017,185:126-135.
    [9] Yuan H R,Li R P,Zhang Y T,et al. Anaerobic digestion of ammonia-pretreated corn stover[J]. Biosystems Engineering,2015,129:142-148.
    [10]乔江涛,郭荣波,袁宪正,等.玉米秸秆厌氧降解复合菌系的微生物群落结构[J].环境科学,2013,34(4):1531-1539.Qiao J T,Guo R B,Yuan X Z,et al. Phylogenetic analysis of methanogenic corn stalk degrading microbial communities[J].Environmental Science,2013,34(4):1531-1539.
    [11]刘雨秋,陈东雨,李金洋,等.温度和pH值对猪粪与玉米秸秆混合厌氧发酵影响的试验研究[J].可再生能源,2014,32(6):860-865.Liu Y Q,Chen D Y,Li J Y,et al. Experimental study on the effect of temperature and pH value on anaerobic fermentation of pig manure and corn straw[J]. Renewable Energy Resources,2014,32(6):860-865.
    [12]郭香麟,左剑恶,史绪川,等.餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J].环境科学,2017,38(7):3070-3077.Guo X L,Zuo J E,Shi X C,et al. Mesophilic and thermophilic anaerobic co-digestion of food waste and straw[J].Environmental Science,2017,38(7):3070-3077.
    [13] Zhou S X,Zhang Y L,Dong Y P. Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung[J]. Energy,2012,46(1):644-648.
    [14] Li D,Liu S C,Mi L,et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure[J]. Bioresource Technology,2015,189:319-326.
    [15] Ramos-Suárez J L,Gómez D,Regueiro L,et al. Alkaline and oxidative pretreatments for the anaerobic digestion of cow manure and maize straw:factors influencing the process and preliminary economic viability of an industrial application[J]. Bioresource Technology,2017,241:10-20.
    [16] Kalamaras S D,Kotsopoulos T A. Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe[J]. Bioresource Technology,2014,172:68-75.
    [17]李琳,张继宇,何艳峰,等.热碱预处理对玉米秸秆厌氧消化的影响[J].北京化工大学学报(自然科学版),2016,43(5):1-7.Li L,Zhang J Y,He Y F,et al. Impact of thermo-alkaline pretreatment on the anaerobic digestion of corn stover[J].Journal of Beijing University of Chemical Technology(Natural Science),2016,43(5):1-7.
    [18] Khatri S,Wu S B,Kizito S,et al. Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw[J]. Applied Energy,2015,158:55-64.
    [19]李凯,吴明阳,徐桂转.酱油渣、牛粪与秸秆混合厌氧发酵产沼气的试验研究[J].河南农业大学学报,2015,49(1):79-82.Li K,Wu M Y,Xu G Z. Study on biogas production from mixed anaerobic fermentation of soy sauce residue,cow dung and straw[J]. Journal of Henan Agricultural University,2015,49(1):79-82.
    [20]姜庆宏,姜月,张宝心.牛粪、秸秆混合厌氧发酵制沼气研究[J].可再生能源,2013,31(1):57-59.Jiang Q H, Jiang Y, Zhang B X. Research on the biogas fermentation with corn stalk and cow dung[J]. Renewable Energy Resources,2013,31(1):57-59.
    [21] Eusébio A,Marques S,Marcolongo L,et al. Dairy cow effluent:enzymatic hydrolysis as pre-treatment of anaerobic digestion[A].Proceedings of the 4th International Conference Wastes:Solutions, Treatments and Opportunities[C]. At Porto,Portugal:Center for Waste Recovery,2017. 87-89.
    [22] Schroyen M,Vervaeren H,Vandepitte H,et al. Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential[J].Bioresource Technology,2015,192:696-702.
    [23] Nkemka V N,Murto M. Biogas production from wheat straw in batch and UASB reactors:the roles of pretreatment and seaweed hydrolysate as a co-substrate[J]. Bioresource Technology,2013,128:164-172.
    [24] Wang H Y,Tao Y,Temudo M,et al. An integrated approach for efficient biomethane production from solid bio-wastes in a compact system[J]. Biotechnology for Biofuels,2015,8:62.
    [25] Wang X M,Li Z F,Zhou X Q,et al. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw[J].Bioresource Technology,2016,219:150-157.
    [26] APHA,AWWA,WEF. Standard methods for the examination of water and wastewater(21st ed.)[M]. Washington, DC:American Public Health Association,2005.
    [27]黄爱玲.玉米秸秆酶水解及发酵乳酸的研究[D].上海:东华大学,2005. 33-36.Huang A L. Enzymatic hydrolysis of corn straw and lactic acid fermentation[D]. Shanghai:Donghua University,2005. 33-36.
    [28]吴强,王宁,李玉成,等. Na OH预处理对秸秆与蓝藻混合厌氧发酵产沼气的影响[J].环境工程学报,2016,10(11):6727-6731.Wu Q,Wang N,Li Y C,et al. Anaerobic fermentation of rice straw and blue algae for biogas under Na OH pretreatment[J].Chinese Journal of Environmental Engineering,2016,10(11):6727-6731.
    [29]裴占江,刘杰,王粟,等. p H值调控对餐厨垃圾厌氧消化效率的影响[J].中国沼气,2015,33(1):17-21.Pei Z J,Liu J,Wang S,et al. Effect of pH modification on anaerobic digestion of kitchen wastes[J]. China Biogas,2015,33(1):17-21.
    [30]夏挺.高固浓度玉米秸秆厌氧发酵产酸特性及其对产沼气的影响[D].沈阳:沈阳农业大学,2017. 10-12.Xia T. Effect of volatile acid on the characteristics of solid state anaerobic fermentation of corn stalk[D]. Shenyang:Shenyang Agricultural University,2017. 10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700