用户名: 密码: 验证码:
滨海湿地盐地碱蓬对铯污染的响应及富集规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of soil cesium pollution by Suaeda salsa in coastal wetland
  • 作者:张衍亮 ; 杨红军 ; 夏江宝 ; 孙景宽 ; 屈凡柱 ; 李磊
  • 英文作者:ZHANG Yan-liang;YANG Hong-jun;XIA Jiang-bao;SUN Jing-kuan;QU Fan-zhu;LI Lei;Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University;College of Life and Environment Science, Minzu University of China;
  • 关键词:黄河三角洲 ; 盐地碱蓬 ; 铯胁迫 ; 萌发特性 ; 富集规律
  • 英文关键词:The Yellow River Delta;;Suaeda salsa;;Cs stress;;germination;;enrichment
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:滨州学院/山东省黄河三角洲生态环境重点实验室;中央民族大学生命与环境科学学院;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.283
  • 基金:国家重点研发计划项目(2017YFC0505904);; 国家自然科学基金青年项目(21507006);; 滨州学院实验技术研究项目(BZXYSYXM201616)~~
  • 语种:中文;
  • 页:NHBH201903017
  • 页数:6
  • CN:03
  • ISSN:12-1347/S
  • 分类号:149-154
摘要
为了探讨黄河三角洲地区先锋植物盐地碱蓬对铯胁迫的富集修复能力,以黄河三角洲滨海湿地先锋植物盐地碱蓬为材料,盆栽条件下研究其在不同Cs浓度胁迫下的萌发特性和迁移、富集特征。结果表明:Cs浓度为100~800 mg·L~(-1)时对盐地碱蓬发芽率、发芽势、发芽指数的影响均不显著,但对胚根和胚芽的生长具有"低促高抑"的双重作用,且胚根对Cs更具敏感性;低浓度Cs(100 mg·kg~(-1))对盐地碱蓬生长具有促进作用,使其生物量增加,表明盐地碱蓬对Cs具有一定的抗胁迫能力;随着Cs浓度的升高,盐地碱蓬对Cs的富集量也逐渐增大,当Cs浓度≤200 mg·kg~(-1)时,富集情况为叶>根>茎;当Cs浓度≥400 mg·kg~(-1)时,富集情况为叶>茎>根,表明盐地碱蓬对Cs具有良好的富集与转运能力。研究表明,盐地碱蓬对Cs具有一定的耐受能力,在Cs污染土壤修复方面具有一定的应用前景。
        To identify the Cs-hyper-accumulator of the Yellow River Delta, Suaeda salsa,a pioneer plant in coastal wetlands of the Yellow River Delta was investigated. The germination characteristics, migration and enrichment characteristics of Suaeda salsa under different levels of Cs stress were studied in pot-grown plants. Concentrations of Cs in the range 100~800 mg·L~(-1) had no significant effects on germination rate, germination potential, and germination index, but exerted a double effect of "low promoting high inhibition" on the growth of roots and buds. Furthermore, the roots of seedlings were more sensitive to Cs. Low concentration of Cs(100 mg·kg~(-1))promoted the growth and biomass of Suaeda salsa, indicating that Suaeda salsa has a degree of anti-stress capacity with respect to Cs. With increasing Cs content in the soil, accumulation of Cs increased in every organ. At a low concentration of Cs(≤200 mg·kg~(-1)), the enrichment effect exhibited the following ranking:leaf > root > stem. At high concentrations(≥400 mg·kg~(-1)), the enrichment effect exhibited the following ranking:leaf >stem > root, which indicated that Suaeda salsa had a strong enrichment and transport capacity for Cs, making it valuable in the remediation of Cs contaminated soils.
引文
[1] International Energy Agency. Key World Energy Statistics 2014[EB/OL].[2014]. http://www. iea. org/publications/freepublications/publication/KeyWorld2014. pdf.
    [2] Greenberg M R, George A, Timothy F, et al. Advancing risk-informed decision making in managing defense nuclear waste in the United States:Opportunities and challenges for risk analysis[J]. Risk Analysis,2018, 39(2):375-388.
    [3] Lokobauer N, Zdenko Frani?, Bauman A, et al. Radiation contamination after the Chernobyl accident and the effective dose received by the population of Croatia[J]. Journal of Environmental Radioactivity, 1998,41(2):137-146.
    [4] Fukushima Nuclear Accident:Information Sheet,16 March 2011[EB/OL]https://www.iaea.org/newscenter/focus/fukushima/fukushima-nuclearaccident-information-sheet
    [5] Djedidi S, Kojima K, Yamaya H, et al. Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil[J]. Journal of Plant Research, 2014, 127(5):585-597.
    [6] Cook L L, Inouye R S, Mcgonigle T P. Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil[J]. Plant and Soil, 2009, 324(1/2):169-184.
    [7]张晓雪,王丹,钟钼芝,等.鸡冠花(Celosia cristata Linn)对Cs和Sr的胁迫反应及其积累特征[J].核农学报, 2010, 24(3):628-633.ZHANG Xiao-xue, WANG Dan, ZHONG Mu-zhi, et al. Response of Celosia Cristata Linn to Cs and Sr stress and their accumulation characteristic[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(3):628-633.
    [8] Smolders E, Tsukada H. The transfer of radiocesium from soil to plants:Mechanisms, data, and perspectives for potential countermeasures in Japan[J]. Integrated Environmental Assessment&Management,2011, 7(3):379-381.
    [9] Deshpande S, Shiau B J, Wade D, et al. Surfactant selection for enhancing ex situ, soil washing[J]. Water Research, 1999, 33(2):351-360.
    [10] Ryan J R, Loehr R C, Rucker E. Bioremediation of organic contaminated soils[J]. Journal of Hazardous Materials, 1991, 28(1/2):159-169.
    [11] Sun J H, Wang G L, Chai Y, et al. Distribution of polycyclic aromatic hydrocarbons(PAHs)in Henan Reach of the Yellow River, Middle China[J]. Ecotoxicology and Environmental Safety, 2009, 72(5):1614-1624.
    [12] Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents[J]. Chemosphere, 2004, 56(3):265-273.
    [13]聂惠,安玉麟,李素萍.向日葵对重金属胁迫反应及其植物修复的研究进展[J].黑龙江农业科学, 2010(9):88-91.NIE Hui, AN Yu-lin, LI Su-ping. Review on sunflower response and phytoremediation to heavy metal stress[J]. Heilongjiang Agricultural Sciences, 2010(9):88-91.
    [14]邓小鹏,彭克俭,陈亚华,等. 4种茄科植物对矿区污染土壤重金属的吸收和富集[J].环境污染与防治, 2011, 33(1):46-51.DENG Xiao-peng, PENG Ke-jian, CHEN Ya-hua, et al. Absorption and accumulation of heavy metals by four Solanaceae palnts in mining contaminated soil[J]. Environmental Pollution&Control, 2011, 33(1):46-51.
    [15]洪晓曦,袁静,郑现明,等.油菜对Cs胁迫的响应及其对Cs富集规律的研究[J].农业环境科学学报, 2017, 36(12):2394-2400.HONG Xiao-xi, YUAN Jing, ZHENG Xian-ming, et al. Accumulation and physio-biochemical responses of Brassia campestris L. to Cs stress[J]. Journal of Agro-Environment Science, 2017, 36(12):2394-2400.
    [16] Broadley M R, Willey N J. Differences in root uptake of radiocaesium by 30 plant taxa[J]. Environmental Pollution, 1997, 97(1/2):11-15.
    [17]唐永金,罗学刚,曾峰,等.不同植物对高浓度Sr、Cs胁迫的响应与修复植物筛选[J].农业环境科学学报, 2013, 32(5):960-965.TANG Yong-jin, LUO Xue-gang, ZENG Feng, et al. The responses of plants to high concentrations of strontium, cesium stress and the screening of remediation plants[J]. Journal of Agro-Environment Science, 2013, 32(5):960-965.
    [18] Wang D, Wen F, Xu C, et al. The uptake of Cs and Sr from soil to radish(Raphanus sativus L.)potential for phytoextraction and remediation of contaminated soils[J]. Journal of Environmental Radioactivity,2012, 110(12):78-83.
    [19] Moogouei R. Use of terrestrial plants for phytoremediation of pollutants from solutions[J]. Iranian Journal of Science&Technology Transactions A Science, 2018, 42(4):1753-1759.
    [20]管博,于君宝,陆兆华,等.黄河三角洲滨海湿地水盐胁迫对盐地碱蓬幼苗生长和抗氧化酶活性的影响[J].环境科学, 2011, 32(8):2422-2429.GUAN Bo, YU Jun-bao, LU Zhao-hua, et al. Effects of water-salt stresses on seedling growth and activities of antioxidative enzyme of Suaeda salsa in coastal wetlands of the Yellow River Delta[J]. Environmental Science, 2011, 32(8):2422-2429.
    [21] Li W Q, Liu X J, Khan M A, et al. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions[J]. Journal of Plant Research, 2005, 118(3):207-214.
    [22] Wang F X, Xu Y G, Wang S, et al. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa[J]. Plant Physiology and Biochemistry, 2015, 95:41-48.
    [23]王耀平,白军红,肖蓉,等.黄河口盐地碱蓬湿地土壤-植物系统重金属污染评价[J].生态学报, 2013, 33(10):3083-3091.WANG Yao-ping, BAI Jun-hong, XIAO Rong, et al. Assessment of heavy metal contamination in the soil-plant system of the Suaeda salsa wetland in the Yellow River Estuary[J]. Acta Ecologica Sinica,2013, 33(10):3083-3091.
    [24]朱靖,陈珂,张渊,等.康定柳对铯胁迫的生理生化响应及富集能力[J].环境工程学报, 2016, 10(3):1515-1520.ZHU Jing, CHEN Ke, ZHANG Yuan, et al. Accumulation and physiobiochemical responses of Salix paraplesia to caesium stress[J]. Chinese Journal of Environmental Engineering, 2016, 10(3):1515-1520.
    [25]张宇. Cs对超富集植物藜萌发代谢生物学的影响[J].安全与环境学报, 2013, 13(3):5-8.ZHANG Yu. Biological effects of Cs on the germination metabolism of Chenopodium album Linn[J]. Journal of Safety and Environment,2013, 13(3):5-8.
    [26] Hampton C R, Bowen H C, Broadley M R, et al. Cesium toxicity in Arabidopsis[J]. Plant Physiology, 2004, 136(3):3824-3837.
    [27]陶宗娅,朱磊,罗学刚,等.铯对油菜萌发代谢生物学效应初探[J].生态与农村环境学报, 2011, 27(2):64-68.TAO Zong-ya, ZHU Lei, LUO Xue-gang, et al. Biological effects of Cs on germination and metabolism of rape(Brassica napus)[J]. Journal of Ecology and Rural Environment, 2011, 27(2):64-68.
    [28] Patra J, Lenka M, Panda B B. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc[J]. New Phytologist, 2010, 128(1):165-171.
    [29] Wang X, Chen C, Wang J. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system[J]. International Journal of Phytoremediation, 2016, 19(4):402-412.
    [30]邹玥,唐运来,王丹,等.木耳菜在4种土壤中对Cs的吸收与转运研究[J].西北植物学报, 2016, 36(1):147-155.ZOU Yue, TANG Yun-lai, WANG Dan, et al. Uptake and transfer of cesium in Gynura cusimbua growing in four types of soils[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1):147-155.
    [31]陈柯罕,张科,李取生,等.四种盐生植物对Cd Pb复合污染提取修复效果比较研究[J].农业环境科学学报, 2017, 36(3):458-465.CHEN Ke-han, ZHANG Ke, LI Qu-sheng, et al. Remediation effects of four halophytes on Cd and Pb compound pollution[J]. Journal of Agro-Environment Science, 2017, 36(3):458-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700