用户名: 密码: 验证码:
Facile oxalic acid-assisted construction of laminated porous N-deficient graphitic carbon nitride: Highly efficient visible-light-driven hydrogen evolution photocatalyst
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Facile oxalic acid-assisted construction of laminated porous N-deficient graphitic carbon nitride: Highly efficient visible-light-driven hydrogen evolution photocatalyst
  • 作者:Fengli ; Yang ; Jia ; Ren ; Qianqian ; Liu ; Lu ; Zhang ; Yuanyuan ; Chai ; Wei-Lin ; Dai
  • 英文作者:Fengli Yang;Jia Ren;Qianqian Liu;Lu Zhang;Yuanyuan Chai;Wei-Lin Dai;Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University;
  • 英文关键词:Oxalic acid;;Melamine;;Laminated porous N-deficient g-C3N4;;Visible-light-induced photocatalytic activity;;for H2 generation
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.33
  • 基金:financial support by the National Natural Science Foundation of China (Project 21373054);; the Natural Science Foundation of Shanghai Science and Technology Committee (08DZ2270500)
  • 语种:英文;
  • 页:TRQZ201906001
  • 页数:8
  • CN:06
  • ISSN:10-1287/O6
  • 分类号:9-16
摘要
The laminated porous N-deficient g-C_3N_4(CN–H)is successfully synthesized by a facile two-step hydrothermal calcination method using oxalic acid-assisted melamine as the precursor.Compared with pristine g-C_3N_4(224μmol g~(-1)h~(-1)),the CN–H shows superior photocatalytic hydrogen production activity(up to 728μmol g~(-1)h~(-1)),which is three times higher than the unmodified counterpart.To draw out the multifaceted influences of oxalic acid modification on the visible-light-induced photocatalytic activity,various techniques are utilized to investigate the formation mechanism,structural characteristics and photoelectrical properties of CN–H.The results indicate that the addition of a trace amount of oxalic acid to the precursor melamine results in a g-C_3N_4 structure possessing the advantage of both nitrogen defects and laminated porosity.These properties can enlarge specific surface areas of g-C_3N_4,enhance an efficient separating of photogenerated electron-hole pairs and extend the range of spectral response,all contributing to the enhancement of the visible-light-induced photocatalytic activity.
        The laminated porous N-deficient g-C_3N_4(CN–H)is successfully synthesized by a facile two-step hydrothermal calcination method using oxalic acid-assisted melamine as the precursor.Compared with pristine g-C_3N_4(224μmol g~(-1)h~(-1)),the CN–H shows superior photocatalytic hydrogen production activity(up to 728μmol g~(-1)h~(-1)),which is three times higher than the unmodified counterpart.To draw out the multifaceted influences of oxalic acid modification on the visible-light-induced photocatalytic activity,various techniques are utilized to investigate the formation mechanism,structural characteristics and photoelectrical properties of CN–H.The results indicate that the addition of a trace amount of oxalic acid to the precursor melamine results in a g-C_3N_4 structure possessing the advantage of both nitrogen defects and laminated porosity.These properties can enlarge specific surface areas of g-C_3N_4,enhance an efficient separating of photogenerated electron-hole pairs and extend the range of spectral response,all contributing to the enhancement of the visible-light-induced photocatalytic activity.
引文
[1]Y.Gong,J.Wang,Z.Wei,P.Li,H.Zhang,Y.Wang,ChemSusChem.7(2015)2303-2309.
    [2]J.Schneider,M.Matsuoka,M.Takeuchi,J.Zhang,Y.Horiuchi,M.Anpo,J.Schneider,M.Matsuoka,M.Takeuchi,J.Zhang,Y.Horiuchi,M.Anpo,D.Bahnemann,Chem.Rev.114(2014)9919-9986.
    [3]T.Takahashi,Science 305(2004)352-353.
    [4]F.Montecchio,D.Chinungi,R.Lanza,K.Engvall,Appl.Surf.Sci.401(2017)283-296.
    [5]A.Fujishima,K.Honda,Nature 238(1972)37-38.
    [6]M.Kapilashrami,Y.Zhang,Y.S.Liu,A.Hagfeldt,J.Guo,Chem.Rev.114(2014)962-707.
    [7]P.Zhang,J.Zhang,J.Gong,Chem.Soc.Rev.45(2014)4395-4422.
    [8]J.S.Jang,K.Y.Yoon,X.Xiao,F.R.F.Fan,A.J.Bard,Chem.Mater.21(2009)4803-4810.
    [9]G.Xi,J.Ye,Chem.Commun.46(2010)1893-1894.
    [10]R.Hao,G.Wang,H.Tang,L.Sun,C.Xu,D.Han,Appl.Catal.B-Environ 187(2016)47-58.
    [11]X.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,M.Johan,Nat.Mater.8(2009)76-80.
    [12]S.Yang,Y.Gong,J.Zhang,L.Zhan,L.Ma,Z.Fang,R.Vajtai,X.Wang,P.Ajayan,Adv.Mater.25(2013)2452-2456.
    [13]J.Zhang,G.Zhang,X.Chen,S.Lin,L.M?hlmann,G.Dolega,G.Lipner,M.Antonietti,S.Blechert,X.Wang,Angew.Chem.51(2012)3183-3187.
    [14]S.Cao,J.Low,J.J.Yu,M.Jaroniec,Adv.Mater.27(2015)2150-2176.
    [15]B.Lin,H.An,X.Yan,T.Zhang,J.Wei,G.Yang,Appl.Catal.B-Environ 210(2017)173-183.
    [16]J.Wen,J.Xie,X.Chen,X.Li,Appl.Surf.Sci.391(2016)72-123.
    [17]W.J.Ong,L.L.Tan,Y.H.Ng,S.T.Yong,S.P.Chai,Chem.Rev.116(2016)7159-7329.
    [18]Y.Zhang,J.Liu,G.Wu,W.Chen,Nanoscale 4(2012)5300-5303.
    [19]J.Xiao,Y.Xie,F.Nawaz,J.Song,D.Feng,M.Li,H.Cao,Appl.Catal.B-Environ181(2016)420-428.
    [20]X.Li,J.Zhang,L.Shen,Y.Ma,W.Lei,Q.Cui,G.Zou,Appl.Phys.A-Mater.94(2009)387-392.
    [21]Y.Wang,X.Wang,M.Antonietti,Y.Zhang,ChemSusChem 3(2010)435-439.
    [22]J.H.Thurston,N.M.Hunter,L.J.Wayment,K.A.Cornell,J.Colloid.Interf.Sci.505(2017)910-918.
    [23]Y.Zhang,T.Mori,J.Ye,M.Antonietti,J.Am.Chem.Soc.132(2010)6294-6295.
    [24]D.Wang,Z.Xu,Q.Luo,X.Li,J.An,R.Yin,C.Bao,J.Mater.Sci.51(2016)893-902.
    [25]H.Yan,Y.Chen,S.Xu,Energ 37(2012)125-133.
    [26]X.S.Zhang,J.Y.Hu,H.Jiang,Chem.Eng.J.256(2014)230-237.
    [27]C.Q.Xu,K.Li,W.D.Zhang,J.Colloid.Interf.Sci 495(2017)27-36.
    [28]J.Gao,Y.Zhou,Z.Li,S.Yan,N.Wang,Z.Zou,Nanoscale 4(2012)3687-3692.
    [29]M.Shalom,S.Inal,C.Fettkenhauer,D.Neher,M.Antonietti,J.Am.Chem.Soc.135(2013)7118-7121.
    [30]L.Shi,F.X.Wang,L.Liang,K.L.Chen,M.S.Liu,R.S.Zhu,J.M.Sun,Catal.Commun89(2017)129-132.
    [31]J.Zhang,X.Chen,K.Takanabe,K.Maeda,K.Domen,Angew.Chem.Int.Ed.Engl.49(2010)441-444.
    [32]M.J.Bojdys,J.O.Müller,M.Antonietti,A.Thomas,Chem.Eur.J.14(2008)8177-8182.
    [33]J.Zhang,M.Zhang,G.Zhang,X.Wang,ACS Catal.2(2012)940-948.
    [34]X.Du,G.Zou,Z.Wang,X.Wang,Nanoscale 7(2015)8701-8706.
    [35]J.H.Li,B.Shen,Z.H.Hong,B.Z.Lin,B.F.Gao,Y.L.Chen,J.Mater.Chem.A.48(2012)12017-12019.
    [36]P.Niu,G.Liu,H.M.Cheng,J.Phys.Chem.C.116(2012)11013-11018.
    [37]J.Ren,X.Liu,L.Zhang,Q.Liu,R.Gao,W.L.Dai,RSC Adv.7(2017)5340-5348.
    [38]P.Yang,H.Ou,Y.Fang,X.Wang,Angew.Chem.56(2017)3992-3996.
    [39]K.Li,X.Xie,W.Zhang,Chem Cat Chem.8(2016)2128-2135.
    [40]Q.Tay,P.Kanhere,C.F.Ng,S.Chen,S.Chakraborty,A.C.Huan,T.Sum,R.Ahuja,Z.Chen,Chem.Mater.27(2015)4930-4933.
    [41]P.Niu,G.Liu,H.M.Cheng,J.Phys.Chem.C.116(2012)11013-11018.
    [42]Z.Hong,B.Shen,Y.Chen,B.Lin,B.Gao,J.Mater.Chem.A 1(2013)11754-11761.
    [43]P.Niu,G.Liu,H.M Cheng,J.Phys.Chem.C.116(2012)11013-11018.
    [44]B.V.Lotsch,M.D?blinger,J.Sehnert,L.Seyfarth,J.Senker,O.Oeckler,W.Schnick,Chemistry 13(2007)4969-4980.
    [45]S.Samanta,S.Martha,K.Parida,ChemCatChem 6(2014)1453-1462.
    [46]L.Luo,A.Zhang,M.J.Janik,K.Li,C.Song,X.Guo,Appl.Surf.Sci.396(2016)78-84.
    [47]N.Daude,C.Gout,C.Jouanin,Phys.Rev.B.15(1977)3229-3235.
    [48]C.Y.Cao,A.Xie,X.G.Yu,Nanoscale 7(2015)2471-2479.
    [49]Y.Zhou,L.Zhang,W.Huang,Q.Kong,X.Fan,M.Wang,Carbon 99(2016)111-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700