用户名: 密码: 验证码:
高寒地区复掺矿物掺合料水工混凝土抗冻耐久性劣化机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on frost resistance durability deterioration mechanism of hydraulic concrete with mineral mixed admixture in alpine regions
  • 作者:赖海珍 ; 陆程铭 ; 荆慧斌 ; 张帅
  • 英文作者:LAI Haizhen;LU Chengming;JING Huibin;ZHANG Shuai;Chongming Region Rural Water Conservancy Management Institute;Shanghai Jingjing Water Conservancy Engineering Design Co.,Ltd;Faculty of Water Resources and Hydroelectric Engineering,Xi'an University of Technology;
  • 关键词:水工混凝土 ; 耐久性 ; 冻融循环 ; 复掺矿物掺合料 ; 劣化机理 ; 高寒地区
  • 英文关键词:hydraulic concrete;;durability;;freeze-thaw cycles;;composite addition of mineral admixture;;deterioration mechanism;;alpine regions
  • 中文刊名:XBSZ
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:崇明区农村水利管理所;上海泾景水利工程设计有限公司;西安理工大学水利水电学院;
  • 出版日期:2019-04-15
  • 出版单位:水资源与水工程学报
  • 年:2019
  • 期:v.30;No.144
  • 基金:国家自然科学基金项目(50779051)
  • 语种:中文;
  • 页:XBSZ201902030
  • 页数:7
  • CN:02
  • ISSN:61-1413/TV
  • 分类号:194-200
摘要
为评定高寒地区环境对掺矿物掺合料水工混凝土结构冻融循环耐久性能的影响规律,通过不同掺合料掺量及种类、不同冻融温度下水工混凝土冻融循环试验,研究分析不同配合比水工混凝土的质量损失率、相对动弹性模量、抗压强度以及渗透性的时变规律,揭示了矿物掺合料与冻融温度对混凝土抗冻性的影响机理。试验结果表明:各掺合料水工混凝土的抗冻性从优到劣依次为粉煤灰+硅灰+稻壳灰>硅灰+稻壳灰>粉煤灰+稻壳灰>粉煤灰+硅灰>稻壳灰>硅灰>粉煤灰>未掺加;相同单掺条件下,掺加稻壳灰试件组抗冻性最强,硅灰居中,粉煤灰最弱;复掺矿物掺合料情况下,三掺粉煤灰、硅灰、稻壳灰混凝土抗冻性最强;复掺矿物掺合料能减少水工混凝土的孔隙率及渗透性,且粉煤灰、硅灰、稻壳灰的颗粒粒径不同会相互填充,从而产生超叠加效应;随着冻融循环过程中试件中心温度的降低,导致混凝土内部的温度梯度增大,孔隙内部的膨胀压力增大导致混凝土内部结构破坏。
        In order to evaluate the effect of alpine region environment on the freeze-thaw cycle durability of hydraulic concrete structures with mineral mixed admixtures,the freeze-thaw cycles of hydraulic concrete with different mixture amount,mixture type,and freeze-thaw temperatures were studied and analyzed. The time-varying laws of mass loss rate,relative dynamic elastic modulus,compressive strength and permeability of hydraulic concrete with different mixing ratios were studied and analyzed,and the influence mechanism of mineral admixtures and freeze-thaw temperature on the frost resistance of concrete was revealed. The test results showed that the frost resistance of concrete with different admixtures ranked: fly ash + silica fume + rice husk fume > silica fume + rice husk fume > fly ash + silica fume > fly ash + silica fume > fly ash + rice husk fume > rice husk fume > silica fume > fly ash> without addition. Under the same single mixing condition,the test group with rice husk ash had the highest frost resistance,the silica fume was in the middle,and the fly ash was the weakest. For mineral mixed admixtures with several minerals,three of fly ash,silica fume and rice husk ash have the strongest frost resistance. Mixed mineral admixtures can reduce the porosity and permeability of hydraulic concrete,and different particle sizes of fly ash,silica fume and rice husk ash will fill each other,resulting in superimposition effect. The freeze-thaw damage of hydraulic concrete increases with the decrease of central temperature during freeze-thaw cycles,which is mainly due to the increase of temperature gradient in concrete and expansion pressure in pore.
引文
[1]王志刚,李鑫,刘数华.紫外线辐射对水工混凝土耐久性影响研究与展望[J].水力发电,2013,39(5):46-47+54.
    [2]CWIRZEN A,SZTERMEN P,HABERMEHL-CWIRZEN K. Effect of baltic seawater and binder type on frost durability of concrete[J]. Journal of Materials in Civil Engineering,2016,26(2):283-287.
    [3]徐帆,贺新星,王瑞骏,等.紫外线与冻融循环作用下的混凝土耐久性研究[J].水资源与水工程学报,2018,29(3):188-193.
    [4]CORINALDESI V,MORICONI G. Influence of mineral additions on the performance of 100%recycled aggregate concrete[J]. Construction and Building Materials,2009,23(8):2869-2876.
    [5]杨益,宁翠萍,程瑞芳,等.掺钢和玄武岩纤维混凝土的冻融循环试验研究[J].水资源与水工程学报,2017,28(4):182-186+192.
    [6]爦AHMARAN M,ZBAY E,YCEL H E,et al. Frost resistance and microstructure of engineered cementitious composites:Influence of fly ash and micro poly-vinyl-alcohol fiber[J]. Cement and Concrete Composites,2012,34:156-165.
    [7]YAZICI H. The effect of silica fume and high-volume Class C fly ash on mechanical properties,chloride penetration and freeze-thaw resistance of self-compacting concrete[J].Construction and Building Materials,2008,22:456-462.
    [8]李阳,王瑞骏,闫菲,等.粉煤灰对混凝土抗冻及抗硫酸盐性能的影响[J].西北农林科技大学学报(自然科学版),2017,45(2):219-226.
    [9]姚军,程宁.基于复掺矿物掺合料的高性能混凝土耐久性能研究[J].筑路机械与施工机械化,2016,33(8):44-47.
    [10]何智海,刘运华,钱春香,等.双掺粉煤灰和石灰石粉对混凝土抗冻融性能的影响研究[J].新型建筑材料,2010(2):1-4.
    [11]张小龙,曾馨花,张会苹,等.复掺矿物掺合料混凝土性能试验研究[J].铁道建筑,2015(9):121-124.
    [12]李琛.复掺矿物掺合料混合骨料混凝土微观抗冻性研究[J].商品混凝土,2013(10):63-64.
    [13]霍俊芳,李伟玲,杨慧,等.矿物掺合料对混合骨料混凝土抗冻性能的影响[J].混凝土,2013(9):63-65.
    [14]陆建飞.大掺量粉煤灰混凝土冻融循环作用下的力学性能研究[D].杨陵:西北农林科技大学,2011.
    [15]胡晓鹏,杨兰,杨超,等.早期受冻掺合料混凝土服役性能试验研究[J].土木建筑与环境工程,2017,39(5):93-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700