用户名: 密码: 验证码:
饲喂频率对哺乳仔猪生长性能和骨骼肌蛋白质合成的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Meal Frequency on Growth Performance and Muscle Protein Synthesis in Suckling Piglets
  • 作者:刘静波 ; 曹山川 ; 杨勇 ; 张宏福
  • 英文作者:LIU Jingbo;CAO Shanchuan;YANG Yong;ZHANG Hongfu;School of Life Science and Engineering,Southwest University of Science and Technology;State Key Laboratory of Animal Nutrition,Institute of Animal Sciences,Chinese Academy of Agricultural Sciences;
  • 关键词:饲喂频率 ; 生长性能 ; 骨骼肌 ; 蛋白质合成 ; 仔猪
  • 英文关键词:meal frequency;;growth performance;;skeletal muscle;;protein synthesis;;piglets
  • 中文刊名:DWYX
  • 英文刊名:Chinese Journal of Animal Nutrition
  • 机构:西南科技大学生命科学与工程学院;中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室;
  • 出版日期:2019-05-08 10:04
  • 出版单位:动物营养学报
  • 年:2019
  • 期:v.31
  • 基金:四川省科技计划资助(2018JY0225);; 四川省教育厅资助科研项目(17ZA0413)
  • 语种:中文;
  • 页:DWYX201907015
  • 页数:9
  • CN:07
  • ISSN:11-5461/S
  • 分类号:116-124
摘要
本试验旨在比较饲喂频率对哺乳仔猪生长性能、胴体组成和骨骼肌蛋白质合成相关基因表达的影响。试验选用来自于4头母猪的16头4日龄的"杜×长×大"仔猪,按体重和性别配对成8对,每对仔猪随机分配到每天饲喂6次组(M6组)和每天饲喂12次组(M12组),每组8头猪,每个配对内仔猪采食量保持一致,人工乳饲喂21 d。结果表明:1)与M12组相比,M6组仔猪的末重,第2周、第3周和全期的平均日增重显著提高(P<0.05),第2周、第3周和全期的料重比显著降低(P<0.05)。2)与M12组相比,M6组仔猪胴体瘦肉率、背最长肌重和半腱肌重显著提高(P<0.05)。3)与M12组相比,M6组仔猪背最长肌胰岛素样生长因子1(IGF1)基因表达量有提高的趋势(P=0. 05);与M12组相比,仔猪背最长肌胰岛素样生长因子1受体(IGF1R)、哺乳动物雷帕霉素靶蛋白(mTOR)、真核细胞翻译起始因子4E(EIF4E)和核糖体蛋白S6(RPS6)的mRNA表达量显著提高(P<0.05),ⅡB型活化素受体(ACVR2B)和Ⅰ型活化素受体样激酶5(ALK5)的mRNA表达量显著降低(P<0.05);与M12组相比,M6组仔猪背最长肌肌肉生长抑素(MSTN) mRNA表达量没有显著变化(P>0.05)。综上所述,在本试验条件下,降低饲喂频率可促进胴体瘦肉沉积和骨骼肌生长,主要通过上调IGF1-IGF1R-mTOR通途路下调M STN受体表达来实现。
        The present study was conducted to determine the effects of meal frequency on growth performance,carcass composition and muscular protein synthesis-related genes expression in suckling piglets. Sixteen piglets of a crossbred genotype [Duroc×( Landrace×Large White) ]were obtained from 4 litters in 4 successive replicates and grouped into 8 pairs according to sex and body weight. At 4 days of age,piglets within each pair were offered the same amount of feed allowance either in 6( M6 group,n = 8) or 12( M12 group,n = 8)meals per day during a 3-week interventional period. The results showed as follows: 1) compared with M12 group,the final body weight and average daily body weight at week 2,week 3 and during the whole trial in M6 group significantly increased( P<0.05),and the feed/gain at week 2,week 3 and during the whole trial significantly decreased( P<0.05). 2) Compared with M12 group,the carcass lean percentage and weight of longissimus muscle and semitendinosus muscle in M6 group significantly increased( P < 0. 05). 3) Compared with M12 group,the mRNA expression of insulin-like growth factor 1( IG F1 R) in M6 group had an increasing trend( P = 0.05); compared with M12 group,the mRNA expression of insulin-like growth factor 1 receptor( IG F1 R),mammalian target of rapamcin( mTOR),eukaryotic cells translate initiation factor 4 E( EIF4 E)and ribosomal protein S6( RPS6) in M6 group significantly increased( P < 0.05),and the mRNA expression of Ⅱ type B activated receptor( ACVR2 B) and type Ⅰ activated kinase receptor( ALK5) in M6 group significantly decreased( P<0.05); compared with M12 group,the mRNA expression of myostatin( MSTN) in M6 group had no significant change( P>0.05). Collectively,reduced meal frequency results in accelerated carcass lean deposition and muscle hypotrophy,which may be mediated by activated IGF1-IGF1 R-mTOR pathway and down-regulated expression of MSTN receptors.[Chinese Journal of Animal Nutrition,2019,31(7):3049-3057]
引文
[1] FOXCROFT G R.Reproduction in farm animals in an era of rapid genetic change:will genetic change outpace our knowledge of physiology[J].Reproduction in Domestic Animals,2012,47(Suppl.4):313-319.
    [2] ZETZSCHE A,PIEPER R,ZENTEK J. Influence of formula versus sowmilk feeding on trace element status and expression of zinc-related genes in the jejunum,liver and pancreas of neonatal piglets[J]. Archives of Animal Nutrition,2015,69(5):366-377.
    [3] SCHMITT O,O’DRISCOLL K,BOYLE L A,et al.Artificial rearing affects piglets pre-weaning behaviour,welfare and growth performance[J].Applied Animal Behaviour Science,2019,210:16-25.
    [4] HU L,HAN F,CHEN L,et al. High nutrient intake during the early postnatal period accelerates skeletal muscle fiber growth and maturity in intrauterine growth-restricted pigs[J]. Genes&Nutrition,2018,13:23.
    [5] CHE L,XUAN Y,HU L,et al.Effect of postnatal nutrition restriction on the oxidative status of neonates with intrauterine growth restriction in a pig model[J].Neonatology,2015,107(2):93-99.
    [6] EL-KADI S W,BOUTRY C,SURYAWAN A,et al.Intermittent bolus feeding promotes greater lean growth than continuous feeding in a neonatal piglet model[J]. The American Journal of Clinical Nutrition,2018,108(4):830-841.
    [7] DAVIS T A,FIOROTTO ML,SURYAWAN A.Bolus vs.continuous feeding to optimize anabolism in neonates[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2015,18(1):102-108.
    [8] LIU J B,CAI X,XIONG H,et al. Effects of feeding frequency on meat quality traits and Longissimus muscle proteome in finishing pigs[J]. Journal of Animal Physiology and Animal Nutrition,2017,101(6):1175-1184.
    [9] CHEN Y,MCCAULEY S R,JOHNSON S E,et al.Downregulated translation initiation signaling predisposes low-birth-weight neonatal pigs to slower rates of muscle protein synthesis[J]. Frontiers in Physiology,2017,8:482.
    [10] EL-KADI S W,GAZZANEO MC,SURYAWAN A,et al. Viscera and muscle protein synthesis in neonatal pigs is increased more by intermittent bolus than by continuous feeding[J]. Pediatric Research,2013,74(2):154-162.
    [11] MA X M,BLENIS J. Molecular mechanisms of mTOR-mediated translational control[J]. Nature Reviews Molecular Cell Biology,2009,10(5):307-318.
    [12] HAN H Q,MITCH W E.Targeting the myostatin signaling pathway to treat muscle wasting diseases[J].Current Opinion in Supportive and Palliative Care,2011,5(4):334-341.
    [13] LAPLANTE M,SABATINI D M.mTOR signaling in growth control and disease[J]. Cell,2012,149(2):274-293.
    [14] HE Q H,REN P P,KONG X F,et al. Intrauterine growth restriction alters the metabonome of the serum and jejunum in piglets[J]. Molecular Biosystems,2011,7(7):2147-2155.
    [15] REHFELDT C,STABENOW B,PFUHL R,et al.Effects of limited and excess protein intakes of pregnant gilts on carcass quality and cellular properties of skeletal muscle and subcutaneous adipose tissue in fattening pigs’[J]. Journal of Animal Science,2012,90(1):184-196.
    [16] AKINTORIN S M,KAMAT M,PILDES R S,et al.A prospective randomized trial of feeding methods in very lowbirth weight infants[J].Pediatrics,1997,100(4):E4.
    [17] SCHANLER R J,SHULMAN R J,LAU C,et al.Feeding strategies for premature infants:randomized trial of gastrointestinal priming and tube-feeding method[J].Pediatrics,1999,103(2):434-439.
    [18] EL-KADI S W,SURYAWAN A,GAZZANEO MC,et al.Anabolic signaling and protein deposition are enhanced by intermittent compared with continuous feeding in skeletal muscle of neonates[J]. American Journal of Physiology:Endocrinology and Metabolism,2012,302(6):E674-E686.
    [19] GAZZANEO M.Differential regulation of protein synthesis and mTOR signaling in skeletal muscle and visceral tissues of neonatal pigs after a meal[J].Pediatric Research,2011,70(3):253-260.
    [20] NEWMAN R E,DOWNING J A,THOMSON P C,et al. Insulin secretion,body composition and pig performance are altered by feeding pattern[J]. Animal Production Science,2014,54(3):319-328.
    [21] PUCHE J E,CASTILLA-CORTZAR I.Human conditions of insulin-like growth factor-Ⅰ(IGF-Ⅰ)deficiency[J]. Journal of Translational Medicine,2012,10:224.
    [22] YAKAR S,LIU J L,STANNARD B,et al. Normal growth and development in the absence of hepatic insulin-like growth factor I[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(13):7324-7329.
    [23] ELLIOTT B,RENSHAW D,GETTING S,et al. The central role of myostatin in skeletal muscle and whole body homeostasis[J]. Acta Physiologica,2012,205(3):324-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700