用户名: 密码: 验证码:
14-3-3蛋白相关研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on 14-3-3 Proteins
  • 作者:曹雅倩 ; 岳试超
  • 英文作者:CAO Ya-qian;YUE Shi-chao;Medical Research Institute,Wuhan University;
  • 关键词:14-3-3蛋白 ; 保守性 ; 结构特征 ; 细胞周期 ; 疾病
  • 英文关键词:14-3-3 proteins;;Conservation;;Structure characteristics;;Cell cycle;;Disease
  • 中文刊名:AHNY
  • 英文刊名:Journal of Anhui Agricultural Sciences
  • 机构:武汉大学医学研究院;
  • 出版日期:2019-06-24 09:09
  • 出版单位:安徽农业科学
  • 年:2019
  • 期:v.47;No.625
  • 语种:中文;
  • 页:AHNY201912005
  • 页数:5
  • CN:12
  • ISSN:34-1076/S
  • 分类号:27-31
摘要
14-3-3蛋白家族是一组高度保守的蛋白质家族,在各种真核生物中广泛存在,主要是以同源/异源二聚体的形式存在,在哺乳动物中共有7种亚型。目前,对于14-3-3蛋白的研究表明其在神经发育、细胞周期、疾病发生等生命过程中都发挥着重要作用。通过对近年来14-3-3蛋白的研究成果进行归纳总结,综述了14-3-3蛋白在蛋白质翻译后修饰、细胞周期及疾病形成等方面的最新研究进展,讨论了深入研究14-3-3蛋白的重要性。
        The 14-3-3 proteins are a family of highly conserved proteins,and the proteins widely express in different eukaryotic cells.The 14-3-3 proteins are mainly in the form of homodimers or heterodimers,which include 7 isoforms in mammals.So far,the research on 14-3-3 proteins showed that it played an important role on neural development,cell cycle,disease occurrence and other life processes.By summarizing the research results of 14-3-3 proteins in recent years,this review summarized the latest research progress of 14-3-3 proteins in the post-translational modification,cell cycle and disease formation,etc,and discussed the importance of further study on 14-3-3 proteins.
引文
[1] MOORE B W,PEREZ V J,GEHRING M.Assay and regional distribution of a soluble protein characteristic of the nervous system[J].Journal of neurochemistry,1968,15(4):265-272.
    [2] MUSLIN A J,TANNER J W,ALLEN P M,et al.Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine[J].Cell,1996,84(6):889-897.
    [3] KILANI R T,MEDINA A,AITKEN A,et al.Identification of different isoforms of 14-3-3 protein family in human dermal and epidermal layers[J].Molecular and cellular biochemistry,2008,314(1/2):161-169.
    [4] JONES D H,LEY S,AITKEN A.Isoforms of 14-3-3 protein can form homo-and heterodimers in vivo and in vitro:Implications for function as adapter proteins[J].FEBS Lett,1995,368(1):55-58.
    [5] FU H,SUBRAMANIAN R R,MASTERS S C.14-3-3 proteins:Structure,function,and regulation[J].Annual review of pharmacology and toxicology,2000,40(1):617-647.
    [6] WEI Y X,LIU W,HU W,et al.Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt[J].Plant cell reports,2017,36(8):1237-1250.
    [7] MORRISON D K.The 14-3-3 proteins:Integrators of diverse signaling cues that impact cell fate and cancer development[J].Trends in cell biology,2009,19(1):16-23.
    [8] JIN J,SMITH F D,STARK C,et al.Proteomic,functional,and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization[J].Curr Biol,2004,14(16):1436-1450.
    [9] FOOTE M,ZHOU Y.14-3-3 proteins in neurological disorders[J].International journal of biochemistry and molecular biology,2012,3(2):152-164.
    [10] AGHAZADEH Y,PAPADOPOULOS V.The role of the 14-3-3 protein family in health,disease,and drug development[J].Drug discovery today,2016,21(2):278-287.
    [11] LIN H,JIAO X L,YU B X,et al.Clinical significance of serum 14-3-3 beta in patients with hepatocellular carcinoma[J].Cancer biomark,2017,20(2):143-150.
    [12] MARZINKE M A,MAVENCAMP T,DURATINSKY J,et al.14-3-3ε and NAV2 interact to regulate neurite outgrowth and axon elongation[J].Archives of biochemistry and biophysics,2013,540(1/2):94-100.
    [13] TOYO-OKA K,WACHI T,HUNT R F,et al.14-3-3 and regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain[J].Journal of neuroscience,2014,34(36):12168-12181.
    [14] BERG D,HOLZMANN C,RIESS O.14-3-3 proteins in the nervous system[J].Nature reviews neuroscience,2003,4(9):752-762.
    [15] KOUSTENI S,TURA F,SWEENEY G E,et al.Sequence and expression analysis of a Xenopus laevis cDNA which encodes a homologue of mammalian 14-3-3 zeta protein[J].Gene,1997,190(2):279-285.
    [16] YAFFE M B.How do 14-3-3 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis[J].FEBS Lett,2002,513(1):53-57.
    [17] PETOSA C,MASTERS S C,BANKSTON L A,et al.14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove[J].J Biol Chem,1998,273(26):16305-16310.
    [18] YANG X Y,QIAN K.Protein O-GlcNAcylation:Emerging mechanisms and functions[J].Nat Rev Mol Cell Biol,2017,18(7):452-465.
    [19] MCFERRIN M B,CHI X,CUTTER G,et al.Dysregulation of 14-3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology[J].Ann Clin Transl Neurol,2017,4(7):466-477.
    [20] WOODCOCK J M,MURPHY J,STOMSKI F C,et al.The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface[J].J Biol Chem,2003,278(38):36323-36327.
    [21] SUNAYAMA J,TSURUTA F,MASUYAMA N,et al.JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3[J].J Cell Biol,2005,170(2):295-304.
    [22] YOSHIDA K,YAMAGUCHI T,NATSUME T,et al.JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage[J].Nat Cell Biol,2005,7(3):278-285.
    [23] OBSILOVA V,HERMAN P,VECER J,et al.14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232[J].J Biol Chem,2004,279(6):4531-4540.
    [24] TOLEMAN C A,SCHUMACHER M A,YU S,et al.Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins[J].Proceedings of the national academy of sciences,2018,115(23):5956-5961.
    [25] DENG Y,JIANG B C,RANKIN C L,et al.Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain[J].Free radical biology and medicine,2018,129:600-607.
    [26] PeNG C Y,GRAVES P R,THOMA R S,et al.Mitotic and G2 checkpoint control:Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216[J].Science,1997,277(5331):1501-1505.
    [27] BULAVIN D V,HIGASHIMOTO Y,DEMIDENKO Z N,et al.Dual phosphorylation controls Cdc25 phosphatases and mitotic entry[J].Nat Cell Bio,2003,5(6):545-551.
    [28] YUAN R,VOS H R,VAN ES R M,et al.Chk1 and 14-3-3 proteins inhibit atypical E2Fs to prevent a permanent cell cycle arrest[J].EMBO J,2018,37(5):e97877.
    [29] LEE M H,LOZANO G.Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins[J].Semin Cancer Biol,2006,16(3):225-234.
    [30] YANG H Y,WEN Y Y,CHEN C H,et al.14-3-3 sigma positively regulates p53 and suppresses tumor growth[J].Mol Cell Biol,2003,23(20):7096-7107.
    [31] LARONGA C,YANG H Y,NEAL C,et al.Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression[J].J Biol Chem,2000,275(30):23106-23112.
    [32] HERMEKING H,LENGAUER C,POLYAK K,et al.14-3-3sigma is a p53-regulated inhibitor of G2/M progression[J].Mol Cell,1997,1(1):3-11.
    [33] LOTTERSBERGER F,RUBERT F,BALDO V,et al.Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress[J].Genetics,2003,165(4):1717-1732.
    [34] ENGELS K,MUZI-FALCONI M,GIANNATTASIO M,et al.14-3-3 proteins regulate exonuclease 1-dependent processing of stalled replication forks[J].PLoS Genetics,2011,7(4):1-9.
    [35] MIZOTANI Y,SUZUKI M,HOTTA K,et al.14-3-3epsilona directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis[J].Proc Natl Acad Sci USA,2018,115(38):8873-8881.
    [36] WAKABAYASHI K,UMAHARA T,HIROKAWA K,et al.14-3-3 protein sigma isoform co-localizes with phosphorylated α-synuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease[J].Neuroscience letters,2018,674:171-175.
    [37] RIZOU M,FRANGOU E A,MARINELI F,et al.The family of 14-3-3 proteins and specifically 14-3-3sigma are up-regulated during the development of renal pathologies[J].J Cell Mol Med,2018,22(9):4139-4149.
    [38] GREEN A J.Use of 14-3-3 in the diagnosis of Creutzfeldt-Jakob disease[J].Biochem Soc Trans,2002,30(4):382-386.
    [39] STOECK K,SANCHEZ-JUAN P,GAWINECKA J,et al.Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias:A longitudinal multicentre study over 10 years[J].Brain,2012,135(Pt 10):3051-3061.
    [40] HUMPEL C,BENKE T.Cerebrospinal fluid levels of 14-3-3 Gamma:What doesit tell us about sporadic Creutzfeldt-Jakob disease?[J].Pharmacology,2017,100(5/6):243-245.
    [41] SAIZ A,GRAUS F,DALMAU J,et al.Detection of 14-3-3 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders[J].Ann Neurol,1999,46(5):774-777.
    [42] COLUCCI M,ROCCATAGLIATA L,CAPELLO E,et al.The 14-3-3 protein in multiple sclerosis:A marker of disease severity[J].Mult Scler,2004,10(5):477-481.
    [43] VANDER T,HALLEVY C,ALSAED I,et al.14-3-3 protein in the CSF of a patient with Hashimoto's encephalopathy[J].J Neurol,2004,251(10):1273-1274.
    [44] CHEAH P S,RAMSHAW H S,THOMAS P Q,et al.Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3zETA DEFICIENCY[J].Mol Psychiatry,2012,17(4):451-466.
    [45] MCFERRIN M B,CHI X,CUTTER G,et al.Dysregulation of 14-3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology[J].Ann Clin Transl Neurol,2017,4(7):466-477.
    [46] DAVIDSON B,HOLTH A,WANG Z,et al.Expression of 14-3-3 sigma and eta proteins is unrelated to survival in metastatic high-grade serous carcinoma[J].APMIS,2018,126(4):309-313.
    [47] HASHEMI M,ZALI A,HASHEMI J,et al.Down-regulation of 14-3-3 zeta sensitizes human glioblastoma cells to apoptosis induction[J].Apoptosis,2018,23(11):616-625.
    [48] SIME W,NIU Q,ABASSI Y,et al.BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma[J].Cell Death Dis,2018,9(5):458.
    [49] YANG H,WEN Y,ZHAO R,et al.DNA damage-induced protein 14-3-3σinhibits protein kinase B/Akt activation and suppresses Akt-activated cancer[J].Cancer research,2006,66(6):3096-3105.
    [50] SCHULTZ J,IBRAHIM S M,VERA J,et al.14-3-3σ gene silencing during melanoma progression and its role in cell cycle control and cellular senescence[J].Mol Cancer,2009,8:1-13.
    [51] LODYGIN D,DIEBOLD J,HERMEKING H.Prostate cancer is characterized by epigenetic silencing of 14-3-3sigma expression[J].Oncogene,2004,23(56):9034-9041.
    [52] MHAWECH P,BENZ A,CERATO C,et al.Downregulation of 14-3-3sigma in ovary,prostate and endometrial carcinomas is associated with CpG island methylation[J].Mod Pathol,2005,18(3):340-348.
    [53] LUO J,FENG J,LU J,et al.Aberrant methylation profile of 14-3-3 sigma and its reduced transcription/expression levels in Chinese sporadic female breast carcinogenesis[J].Med Oncol,2010,27(3):791-797.
    [54] FERGUSON A T,EVRON E,UMBRICHT C B,et al.High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer[J].Proc Natl Acad Sci USA,2000,97(11):6049-6054.
    [55] YE M,HUANG T,YING Y,et al.Detection of 14-3-3 sigma (σ) promoter methylation as a noninvasive biomarker using blood samples for breast cancer diagnosis[J].Oncotarget,2017,8(6):9230-9242.
    [56] NADERI A.C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer[J].Oncotarget,2017,8(34):57907-57933.
    [57] SINGRANG N,KITTISENACHAI S,ROYTRAKUL S,et al.NOTCH1 regulates the viability of cholangiocarcinoma cells via 14-3-3 theta[J].J Cell Commun Signal,2019,13(2):245-254.
    [58] MAXWELL S A,CHERRY E M,BAYLESS K J.Akt,14-3-3zeta,and vimentin mediate a drug-resistant invasive phenotype in diffuse large B-cell lymphoma[J].Leuk Lymphoma,2011,52(5):849-864.
    [59] LI Z G,ZHAO J,DU Y H,et al.Down-regulation of 14-3-3zeta suppresses anchorage-independent growth of lung cancer cells through anoikis activation[J].Proc Natl Acad Sci USA,2008,105(1):162-167.
    [60] CHATTERJEE D,GOLDMAN M,BRAASTAD C D,et al.Reduction of 9-nitrocamptothecin-triggered apoptosis in DU-145 human prostate cancer cells by ectopic expression of 14-3-3zeta[J].Int J Oncol,2004,25(2):503-509.
    [61] ROOT A,BEIZAEI A,EBHARDT H A.Structure-based assessment and network analysis of targeting 14-3-3 proteins in prostate cancer[J].Mol Cancer,2018,17(1):156.
    [62] EBHARDT H A,ROOT A,LIU Y S,et al.Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer[J].NPJ Syst Biol Appl,2018,4:26.
    [63] CHOI H S,JEONG E H,LEE T G,et al.Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells[J].Tuberc Respir Dis (Seoul),2013,75(1):9-17.
    [64] KIDD M E,SHUMAKER D K,RIDGE K M.The role of vimentin intermediate filaments in the progression of lung cancer[J].Am J Respir Cell Mol Biol,.2014,50(1):1-6.
    [65] ZHONG J T,KONG X X,ZHANG H Y,et al.Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation[J].PLoS One,2012,7(6):1-10.
    [66] HE C L,BIAN Y Y,XUE Y,et al.Pyruvate kinase M2 activates mTORC1 by phosphorylating AKT1S1[J].Sci Rep,2016,6:215-241.
    [67] WANG R C,WEI Y,AN Z,et al.Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation[J].Science,2012,338(6109):956-959.
    [68] FETTWEIS G,DI VALENTIN E,L’HOMME L,et al.RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death[J].Biochim Biophys Acta Mol Cell Res,2017,1864(1):113-124.
    [69] MARCHAND B,ARSENAULT D,RAYMOND-FLEURY A,et al.Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells[J].J Biol Chem,2015,290(9):5592-5605.
    [70] BODEN G,DUAN X,HOMKO C,et al.Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese,insulin-resistant individuals[J].Diabetes,2008,57(9):2438-2444.
    [71] INSENSER M,MONTES-NIETO R,VILARRASA N,et al.A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity[J].Mol Cell Endocrinol,2012,363(1/2):10-19.
    [72] LIM G E,ALBRECHT T,PISKE M,et al.14-3-3ζ coordinates adipogenesis of visceral fat[J].Nat Commun,2015,6:1-19.
    [73] DIALLO K,OPPONG A K,LIM G E.Can 14-3-3 proteins serve as therapeutic targets for treatment of metabolic diseases?[J].Pharmacological research,2019,139:199-206.
    [74] THANDAVARAYAN R A,GIRIDHARAN V V,SARI F R,et al.Depletion of 14-3-3 protein exacerbates cardiac oxidative stress,inflammation and remodeling process via modulation of MAPK/NF-kB signaling pathways after streptozotocin-induced diabetes mellitus[J].Cell Physiol Biochem,2011,28(5):911-922.
    [75] WATANABE K,THANDAVARAYAN R A,GURUSAMY N,et al.Role of 14-3-3 protein and oxidative stress in diabetic cardiomyopathy[J].Acta Physiol Hung,2009,96(3):277-287.
    [76] KAPLAN A,OTTMANN C,FOURNIER A E.14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases[J].Pharmacol Res,2017,125(Pt B):114-121.
    [77] GU Y,MI W,GE Y,et al.GlcNAcylation plays an essential role in breast cancer metastasis[J].Cancer Res,2010,70(15):6344-6351.
    [78] MI W Y,GU Y C,HAN C F,et al.O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy[J].Biochim Biophys Acta,2011,1812(4):514-519.
    [79] FERRER C M,LYNCH T P,SODI V L,et al.O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway[J].Mol Cell,2014,54(5):820-831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700