用户名: 密码: 验证码:
基于损伤控制的杨房沟水电站厂房开挖保护层厚度优选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selection of the Protection Layer Thickness for Underground Powerhouse Excavation in Yangfanggou Hydropower Station based on Damage Control
  • 作者:陶郦雪 ; 张帅
  • 英文作者:TAO Lixue;ZHANG Shuai;State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University;Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University;Powerchina Huadong Engineering Co., Ltd.;
  • 关键词:杨房沟水电站 ; 地下厂房 ; 开挖损伤 ; 保护层厚度
  • 英文关键词:Yangfanggou Hydropower Station;;underground powerhouse;;excavation damage;;protective layer thickness
  • 中文刊名:HBFD
  • 英文刊名:Hydropower and New Energy
  • 机构:武汉大学水资源与水电工程国家重点实验室;武汉大学水工岩石力学教育部重点实验室;中国电建集团华东勘测设计研究院有限公司;
  • 出版日期:2019-05-30
  • 出版单位:水电与新能源
  • 年:2019
  • 期:v.33;No.179
  • 语种:中文;
  • 页:HBFD201905009
  • 页数:4
  • CN:05
  • ISSN:42-1800/TV
  • 分类号:35-38
摘要
地下厂房的开挖程序对围岩损伤控制有重要影响。以杨房沟水电站地下厂房开挖为背景,采用ANSYS/LS-DYNA有限元软件建立数值模型,对比分析不同保护层厚度开挖方案对厂房围岩损伤分布及损伤范围的影响。计算结果表明,不同的开挖方案下围岩损伤的分布基本相同;损伤范围则随保护层厚度的增大呈现先减小后增大的趋势。在杨房沟地下厂房开挖过程中选取2 m左右的保护层能够有效的降低爆破开挖对围岩的扰动,控制围岩的损伤破坏。
        The excavation procedure of underground powerhouse is of great influence on the damage control of surrounding rock. Based on the excavation of the underground powerhouse in Yangfanggou Hydropower Station, a numerical model is developed in ANSYS/LS-DYNA finite element software. The damage distributions and damage extents in surrounding rock with different protection layer thickness in the excavation are compared. The results show that the damage distributions in surrounding rock are basically the same under different excavation schemes, while the damage extent firstly decreases and then increases with the increase of the protection layer thickness. During the excavation of the underground powerhouse, the optimal thickness of the protection layer is 2 m. It can effectively reduce the disturbance of the surrounding rock and control the damage induced by the blasting excavation.
引文
[1]李树忱,钱七虎,张敦福,等.深埋隧道开挖过程动态及破裂形态分析[J].岩石力学与工程学报,2009,28(10):2 104–2 112
    [2]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621
    [3]李新平,陈俊桦,李友华,等.溪洛渡电站地下厂房爆破损伤范围及判据研究[J].岩石力学与工程学报,2010,29(10):2 042-2 049
    [4]易长平,卢文波,许红涛,等.岩体开挖过程中初始应力的动态卸荷效应研究[J].岩石力学与工程学报,2005,24(s1):4 750-4 754
    [5]Martino J B,Chandler N A.Excavation-induced damage studies at the Underground Research Laboratory [J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1 413–1 426
    [6]Read R S.20 years of excavation response studies at AECL′s Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1 251-1 275
    [7]Tsang C,Jing L,Stephansson O,et al.The DECOVALEX III project:A summary of activities and lessons learned[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(5-6):593–610
    [8]谢源.高应力条件下岩石爆破裂纹扩展规律的模拟研究[J].湖南有色金属,2002,18(4):1-3
    [9]严鹏,卢文波,陈明,等.深部岩体开挖方式对损伤区影响的试验研究[J].岩石力学与工程学报,2011,30(6):1 097-1 106
    [10]戴俊.深埋岩石隧洞的周边控制爆破方法与参数确定[J].爆炸与冲击,2004,24(6):493-498
    [11]陈明,胡英国,卢文波,等.深埋隧洞爆破开挖扰动损伤效应的数值模拟[J].岩土力学,2011,32(5):1 531-1 537
    [12]Persson P A,Holmberg R,Lee J.Rock blasting and explosives engineering[M].Boca Raton:CRC Press,1993:101-107
    [13]Lu W,Yang J,Chen M,et al.An equivalent method for blasting vibration simulation[J].Simulation Modelling Practice & Theory,2011,19(9):2 050-2 062
    [14]胡英国,卢文波,陈明,等.岩石爆破损伤模型的比选与改进[J].岩土力学,2012,33(11):3 278-3 284
    [15]卢文波,周创兵,陈明,等.开挖卸荷的瞬态特性研究[J].岩石力学与工程学报,2008,27(11):2 184-2 192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700