用户名: 密码: 验证码:
碳/金属复合材料界面结构优化及界面作用机制的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites
  • 作者:范同祥 ; 刘悦 ; 杨昆明 ; 宋健 ; 张荻
  • 英文作者:FAN Tongxiang;LIU Yue;YANG Kunming;SONG Jian;ZHANG Di;State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering,Shanghai Jiao Tong University;
  • 关键词:碳增强相 ; 金属基复合材料 ; 界面结构优化 ; 界面作用机制
  • 英文关键词:carbon reinforcement;;metal matrix composite;;interfacial structure optimization;;influencing mechanism
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:上海交通大学材料科学与工程学院金属基复合材料国家重点实验室;
  • 出版日期:2019-01-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:国家重点研发计划材料基因组专项课题项目No.2017-YFB0703101~~
  • 语种:中文;
  • 页:JSXB201901003
  • 页数:17
  • CN:01
  • ISSN:21-1139/TG
  • 分类号:20-36
摘要
依赖于增强相的界面效应和尺寸效应,金属基复合材料不断向综合性能优异的方向发展。由于界面结构对金属基复合材料最终的综合性能起决定性作用,故通过工艺设计实现界面结构的优化成为金属基复合材料的重要研究方向。碳材料(金刚石、碳纳米管和石墨烯等)由于具有优异的本征力学与功能特性,作为金属基复合材料的增强相近年来受到研究者的广泛关注。本文总结了近年来碳/金属复合材料界面结构的不同优化手段,讨论了不同界面结构对碳/金属复合材料结构和功能性能的作用机制,并对未来碳/金属复合材料的界面研究方向进行了展望。
        Interfacial structure plays a critical role in determining combination properties of the metal matrix composites(MMCs). In order to further increase the properties, it is important to modify interfacial structure through fabrication process. Owing to the excellent mechanical and functional properties of carbon materials, such as the diamond, carbon nanotubes and graphene, carbon reinforced MMCs has attracted much attention in recent years. This work reviewed various interfacial structure optimization methods and their influencing mechanisms on the mechanical and functional properties of carbon/metal matrix composites. Moreover, the future research interests related to carbon/metal interface studies are proposed.
引文
[1] Guo B S, Zhang X M, Cen X, et al. Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes[J]. Carbon, 2018, 139:459
    [2] Chang G, Sun F Y, Duan J J, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond[J]. Acta Mater.,2018, 160:235
    [3] Zhang H L, Wu J H, Zhang Y, et al. Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration[J]. Mater. Sci. Eng., 2015, A626:362
    [4] Zhang X J, Song F, Wei Z P, et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Mater. Sci. Eng., 2017,A705:153
    [5] Huang Z X, Zheng Z, Zhao S, et al. Copper matrix composites reinforced by aligned carbon nanotubes:Mechanical and tribological properties[J]. Mater. Des., 2017, 133:570
    [6] Casati R, Fabrizi A, Timelli G, et al. Microstructural and mechanical properties of Al-based composites reinforced with in-situ and exsitu Al2O3nanoparticles[J]. Adv. Eng. Mater., 2015, 18:550
    [7] Claussen N, Beyer P, Janssen R, et al. Squeeze cast b-Si3N4-Al composites[J]. Adv. Eng. Mater., 2002, 4:117
    [8] Lin J X, Ran G, Lei P H, et al. Microstructure analysis of neutron absorber Al/B4C metal matrix composites[J]. Metals, 2017, 7:567
    [9] Banerjee A, Bernoulli D, Zhang H T, et al. Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360:300
    [10] Baughman R H, Zakhidov A A, De Heer W A. Carbon nanotubesthe route toward applications[J]. Science, 2002, 297:787
    [11] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442:282
    [12] Park M, Kim B H, Kim S, et al. Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups[J]. Carbon, 2011, 49:811
    [13] Kim K T, Cha S I, Gemming T, et al. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbonnanotube-reinforced metal matrix nanocomposites[J]. Small,2010, 4:1936
    [14] Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Adv. Mater., 2013, 25:6724
    [15] Chu K, Liu Y P, Wang J, et al. Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites[J]. Mater. Sci. Eng., 2018, A735:398
    [16] Yang M, Weng L, Zhu H X, et al. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons[J]. Carbon, 2017, 118:250
    [17] Kang P S, Lee I H, Duong D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Mater., 2011, 59:3313
    [18] Jiang L, Fan G L, Li Z Q, et al. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder[J]. Carbon, 2011, 49:1965
    [19] Jiang L, Li Z Q, Fan G L, et al. Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with twodimensional alignment of carbon nanotubes[J]. Scr. Mater., 2012,66:331
    [20] Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91alloy composites reinforced by graphene nanosheets[J]. Carbon,2018, 127:177
    [21] Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide[J]. Mater. Charact., 2018, 138:215
    [22] Hopkins P E, Baraket M, Barnat E V, et al. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization[J]. Nano Lett., 2012, 12:590
    [23] Foley B M, Hernández S C, Duda J C, et al. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces[J]. Nano Lett., 2015, 15:4876
    [24] Jiang T, Zhang X Q, Vishwanath S, et al. Covalent bonding modulated graphene-metal interfacial thermal transport[J]. Nanoscale,2016, 8:10993
    [25] Wozniak J, Cygan T, Petrus M, et al. Tribological performance of alumina matrix composites reinforced with nickel-coated graphene[J]. Ceram. Int., 2018, 44:9728
    [26] Luo H, Sui Y, Qi J, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles[J]. J. Alloys Compd., 2017, 729:293
    [27] Pan Y P, He X B, Ren S B, et al. Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique[J]. Vacuum,2018, 153:74
    [28] Zhao X Y, Tang J C, Yu F X, et al. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition[J]. J. Alloys Compd., 2018, 766:266
    [29] Tang Y X, Yang X M, Wang R R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphenenickel hybrids[J]. Mater. Sci. Eng., 2014, A599:247
    [30] Hao X, Wang X H, Zhou S M, et al. Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene[J]. Mater. Chem. Phys., 2018, 215:327
    [31] Mai Y J, Chen F X, Lian W Q, et al. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets[J]. J. Alloys Compd., 2018, 756:1
    [32] Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Carbon, 2018, 137:146
    [33] Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale,2017, 9:11929
    [34] Liu G, Zhao N Q, Shi C S, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J]. Mater. Sci. Eng., 2017, A699:185
    [35] Fu K, Zhang X, Shi C S, et al. An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties[J]. Mater. Sci. Eng., 2018, A715:108
    [36] Liu X H, Li J J, Sha J W, et al. In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2018, A709:65
    [37] Abyzov A M, Kidalov S V, Shakhov F M. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper(silver)matrix[J]. J. Mater. Sci., 2010, 46:1424
    [38] Chu K, Liu Z F, Jia C C, et al. Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles[J]. J. Alloys Compd., 2010, 490:453
    [39] Zhang Y, Zhang H L, Wu J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scr. Mater., 2011, 65:1097
    [40] Shen X Y, He X B, Ren S B, et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. J. Alloys Compd., 2012, 529:134
    [41] Wang H Y, Tian J. Thermal conductivity enhancement in Cu/diamond composites with surface-roughened diamonds[J]. Appl.Phys., 2014, 116A:265
    [42] Abyzov A M, Kruszewski M J, Ciupiński?, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Mater. Des., 2015,76:97
    [43] Che Q L, Zhang J J, Chen X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Mater.Sci. Semicond. Process., 2015, 33:67
    [44] Kang Q P, He X B, Ren S B, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles[J]. Mater. Charact., 2015, 105:18
    [45] Ma S D, Zhao N Q, Shi C S, et al. Mo2C coating on diamond:Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Appl. Surf. Sci., 2017, 402:372
    [46] Pan Y P, He X B, Ren S B, et al. High thermal conductivity of diamond/copper composites produced with Cu-ZrC double-layer coated diamond particles[J]. J. Mater. Sci., 2018, 53:8978
    [47] Sang J Q, Yang W L, Zhu J J, et al. Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment[J]. J. Alloys Compd., 2018, 740:1060
    [48] Yang W S, Chen G Q, Wang P P, et al. Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. J.Alloys Compd., 2017, 726:623
    [49] Che Z F, Wang Q X, Wang L H, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration[J]. Composites, 2017, 113B:280
    [50] Ma L, Zhang L, Zhao P Y, et al. A new design of composites for thermal management:Aluminium reinforced with continuous CVD diamond coated W spiral wires[J]. Mater. Des., 2016, 101:109
    [51] Ren S B, Shen X Y, Guo C Y, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Compos. Sci. Technol., 2011,71:1550
    [52] Kang Q P, He X B, Ren S B, et al. Preparation of high thermal conductivity copper-diamond composites using molybdenum carbidecoated diamond particles[J]. J. Mater. Sci., 2013, 48:6133
    [53] Wang L H, Li J W, Catalano M, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer[J]. Composites, 2018, 113A:76
    [54] Cho H J, Kim Y J, Erb U. Thermal conductivity of copperdiamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites,2018, 155B:197
    [55] Li J W, Zhang H L, Zhang Y, et al. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J]. J. Alloys Compd.,2015, 647:941
    [56] Wang L H, Li J W, Che Z F, et al. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites[J]. J. Alloys Compd., 2018,749:1098
    [57] Zhang C, Cai Z Y, Tang Y G, et al. Microstructure and thermal behavior of diamond/Cu composites:Effects of surface modification[J]. Dia. Rela. Mater., 2018, 86:98
    [58] Zhang H D, Zhang J J, Liu Y, et al. Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J]. Scr. Mater., 2018, 152:84
    [59] Cho S, Kikuchi K, Kawasaki A, et al. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite[J]. Nanotechology, 2012, 23:315705
    [60] Xiong N, Bao R, Yi J H, et al. CNTs/Cu-Ti composites fabrication through the synergistic reinforcement of CNTs and in situ generated nano-TiC particles[J]. J. Alloys Compd., 2019, 770:204
    [61] Chu K, Wang F, Li Y B, et al. Interface structure and strengthening behavior of graphene/CuCr composites[J]. Carbon, 2018, 133:127
    [62] Chu K, Wang F, Wang X H, et al. Interface design of graphene/copper composites by matrix alloying with titanium[J]. Mater. Des.,2018, 144:290
    [63] Li J W, Wang X T, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scr. Mater., 2015,109:72
    [64] Chu K, Jia C C, Guo H, et al. On the thermal conductivity of CuZr/diamond composites[J]. Mater. Des., 2013, 45:36
    [65] Pérez-Bustamante R, Pérez-Bustamante F, Estrada-Guel I, et al. Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying[J]. Mater.Charact., 2013, 75:13
    [66] Zhang Z W, Liu Z Y, Xiao B L, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2018, 135:215
    [67] Dong L L, Xiao B, Liu Y, et al. Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides[J]. Ceram. Int., 2018, 44:17835
    [68] Deng C F, Zhang X X, Wang D Z. Chemical stability of carbon nanotubes in the 2024Al matrix[J]. Mater. Lett., 2007, 61:904
    [69] Kwon H, Takamichi M, Kawasaki A, et al. Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material[J]. Mater. Chem. Phy., 2013, 138:787
    [70] Liu X Q, Li C J, Eckert J, et al. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites[J]. Mater. Charact., 2017, 133:122
    [71] Jiang L Y, Liu T T, Zhang C D, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting[J]. Mater. Sci. Eng., 2018, A734:171
    [72] Zhou W W, Bang S, Kurita H, et al. Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites[J]. Carbon, 2016, 96:919
    [73] Zhou W W, Yamaguchi T, Kikuchi K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Mater., 2017, 125:369
    [74] Chen B, Shen J, Ye X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes(CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2016, 114:198
    [75] Chen B, Imai H, Umeda J, et al. Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes(MWCNTs)[J].JOM, 2017, 69:669
    [76] Li S F, Sun B, Imai H, et al. Powder metallurgy Ti-TiC metal matrix composites prepared by in situ reactive processing of TiVGCFs system[J]. Carbon, 2013, 61:216
    [77] Mu X N, Cai H N, Zhang H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite[J]. Mater. Des., 2018, 140:431
    [78] Chen Y K, Zhang X, Liu E Z, et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites[J]. Sci. Rep., 2016, 6:19363
    [79] Chen Y K, Zhang X, Liu E Z, et al. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J]. J. Alloys Compd., 2016, 688:69
    [80] Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper:Nacre-inspired nanolaminated architecture coupled with insitu processing for enhanced mechanical properties and high electrical conductivity[J]. Carbon, 2017, 117:65
    [81] González C, Vilatela J J, Molina-Aldareguía J M, et al. Structural composites for multifunctional applications:Current challenges and future trends[J]. Prog. Mater. Sci., 2017, 89:194
    [82] Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene(reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Lett., 2015, 15:8077
    [83] Hwang B, Kim W, Kim J, et al. Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite[J]. Nano Lett.,2017, 17:4740
    [84] Liu X Y, Wang F C, Wu H A, et al. Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface[J]. Appl. Phys. Lett., 2014, 104:231901
    [85] Kim Y, Lee J, Yeom M S, et al. Strengthening effect of singleatomic-layer graphene in metal-graphene nanolayered composites[J]. Nat. Commun., 2013, 4:2114
    [86] Feng S W, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars[J].Acta Mater., 2017, 125:98
    [87] Li Z, Zhao L, Guo Q, et al. Enhanced dislocation obstruction in nanolaminated graphene/Cu composite as revealed by stress relaxation experiments[J]. Scr. Mater., 2017, 131:67
    [88] Chang G, Duan J L, Wang L H, et al. Thermal boundary conductance of a new generation of high thermal conductivity metal matrix composites:A review[J]. Mater. Rev., 2017, 31(7):72(常国,段佳良,王鲁华等.新一代高导热金属基复合材料界面热导研究进展[J].材料导报, 2017, 31(7):72)
    [89] Tan Z Q, Ji G, Addad A, et al. Tailoring interfacial bonding states of highly thermal performance diamond/Al composites:Spark plasma sintering vs. vacuum hot pressing[J]. Composites, 2016,91A:9
    [90] Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals[J]. Phys Rev, 2000, 61B:2651
    [91] Chaves F A, Jiménez D, Cummings A W, et al. Physical model of the contact resistivity of metal-graphene junctions[J]. J. Appl.Phys., 2014, 115:164513
    [92] Nagashio K, Nishimura T, Kita K, et al. Contact resistivity and current flow path at metal/graphene contact[J]. Appl. Phys. Lett.,2010, 97:143514
    [93] Nam Do V, Anh Le H. Transport characteristics of graphene-metal interfaces[J]. Appl. Phys. Lett., 2012, 101:161605
    [94] Liu H C, Teng X Y, Wu W B, et al. Effect of graphene addition on properties of Cu-based composites for electrical contacts[J]. Mater. Res. Expr., 2017, 4:066506
    [95] Yang P, You X, Yi J H, et al. Influence of dispersion state of carbon nanotubes on electrical conductivity of copper matrix composites[J]. J. Alloys Compd., 2018, 752:376
    [96] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Lett., 2008, 8:2458
    [97] Si S Y, Li W Q, Zhao X L, et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene[J]. Adv. Mater., 2017, 29:1604623
    [98] So K P, Chen D, Kushima A, et al. Dispersion of carbon nanotubes in aluminum improves radiation resistance[J]. Nano Energy,2016, 22:319
    [99] Kim Y, Baek J, Kim S, et al. Radiation resistant vanadiumgraphene nanolayered composite[J]. Sci. Rep., 2016, 6:24785

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700