用户名: 密码: 验证码:
超磁致伸缩材料在电液伺服阀中的应用现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Giant Magnetostrictive Material in Electro-hydraulic Servo Valve
  • 作者:郑佳伟 ; 何忠波 ; 荣策 ; 薛光明 ; 杨朝舒
  • 英文作者:ZHENG Jia-wei;HE Zhong-bo;RONG Ce;XUE Guang-ming;YANG Zhao-shu;Department of Vehicle and Electrical Engineering,Shijiazhuang Campus of Army Engineering University;Department of Mechanical Engineering,University of Auckland;
  • 关键词:超磁致伸缩材料 ; 物理效应 ; 放大机构 ; 电液伺服阀
  • 英文关键词:giant magnetostrictive material;;physical effects;;amplification mechanism;;electro-hydraulic servo valve
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:陆军工程大学石家庄校区车辆与电气工程系;奥克兰大学机械工程系;
  • 出版日期:2018-03-15
  • 出版单位:液压与气动
  • 年:2018
  • 期:No.319
  • 基金:国家自然科学基金(51275525)
  • 语种:中文;
  • 页:YYYQ201803004
  • 页数:10
  • CN:03
  • ISSN:11-2059/TH
  • 分类号:25-34
摘要
超磁致伸缩材料是一种具有响应速度快、磁致伸缩应变大、能量密度高等优良特性的新型功能材料,针对其研究和应用已经成为当前热点。基于现代工业对高性能电液伺服阀的需求,描述了该材料的磁致伸缩效应,并对其基本性能及物理效应作了阐述,同时通过对比压电陶瓷、形状记忆合金的性能参数,分析了超磁致伸缩材料的性能优势。最后着重介绍了该材料在喷嘴挡板阀、射流管阀及直接驱动式电液伺服阀当中的应用现状,并基于此现状对研制高性能的超磁致伸缩电液伺服阀关键技术进行了展望。
        Giant magnetostrictive material( GMM) is a kind of novel functional material with excellent features,such as fast response,large magnetostriction and high energy density,and it has attracted the attention of researchers from different fields. Based on the demand of high performance electro-hydraulic servo valve for modern industry,this paper describes the magnetostrictive effect of GMM in brief and expounds its basic properties as well as several physical effects. Then,comparing the performance parameters of piezoelectric ceramics and shape memory alloy,we analyze the performance advantages of GMM. Finally,the application status of GMM in nozzle flapper valve,jet pipe valve and direct drive electro-hydraulic servo valve is introduced emphatically. On the basis of that,the key technology of developing high performance magnetostrictive electro-hydraulic servo valve is prospected.
引文
[1]王军政,赵江波,汪首坤.电液伺服技术的发展与展望[J].液压与气动,2014,(5):1-12.WANG Junzheng,ZHAO Jiangbo,WANG Shoukun.The Development and Future Trends Electro-hydraulic Servo Technology[J].Chinese Hydraulics&Pneumatics,2014,(5):1-12.
    [2]张国庆.电液伺服阀输出流量非线性问题的研究[J].液压与气动,2016,(6):74-77.ZHANG Guoqing.Nonlinear Flow of Electro-hydraulic Servo Valve[J].Chinese Hydraulics&Pneumatics,2016,(6):74-77.
    [3]王卓,黄川,申振丰,等.小流量电液伺服阀叠合量气动测量台的研制[J].液压与气动,2017,(5):113-119.WANG Zhuo,HUANG Chuan,SHEN Zhenfeng,et al.Pneumatic Measuring System for Overlap Electro-hydraulic Servo Valve[J].Chinese Hydraulics&Pneumatics,2017,(5):113-119.
    [4]訚耀保.极端环境下的电液伺服控制理论及应用技术[M].上海:上海科学技术出版社,2012.YIN Yaobao.Electro-hydraulic Servo Control Theory and Application Technology in Extreme Environment[M].Shanghai:Shanghai Science and Technology Press,2012.
    [5]李跃松,朱玉川,吴洪涛,等.电液伺服阀的研究现状[J].航空兵器,2010,(6):20-24.LI Yuesong,ZHU Yuchuan,WU Hongtao,et al.Research Actuality of Electro-hydraulic Servo Valve[J].Aero Weaponry,2010,(6):20-24.
    [6]赵冉,卢全国,雍康俊,等.磁致伸缩执行器驱动的精密流量阀建模与仿真[J].机械设计与研究,2015,(6):115-118.ZHAO Ran,LU Quanguo,YONG Kangjun,et al.Modeling and Simulation of Precision Flow Valve by Magnetostrictive Actuator[J].Mechanical Design and Research,2015,(6):115-118.
    [7]郭咏新,张臻,王贞艳,等.超磁致伸缩作动器的率相关振动控制实验研究[J].振动与冲击,2015,32(12):51-57.GUO Yongxin,ZHANG Zhen,WANG Zhenyan,et al.Experiment Investigation on Rate-dependent Vibration Control of Giant Magnetostrictive Actuators[J].Journal of Vibration and Shock,2015,32(12):51-57.
    [8]薛光明,何忠波,李冬伟,等.超磁致伸缩材料在液压阀中的应用现状[J].液压与气动,2013,(04):94-88.XUE Guangming,HE Zhongbo,LI Dongwei,et al.Application of Giant Magnetostrictive Material in Hydraulic Valve[J].Chinese Hydraulics&Pneumatics,2013,(4):94-88.
    [9]OLABI A G,GRUNWALD A.Design and Application of Magnetostrictive Materials[J].Materials&Design,2008(29):469-483.
    [10]江田弘.超磁ちい超精密位置决め装置とそれを搭载した超精密工作机械の开发[C].日本机械学会论文集(C篇),日本:1994,60(572).EDA Hiroshi.Development of a Giant Magnetostrictiontype Ultraprecision Positioning Device and Ultraprecision Machine Tool Equipped with It[C].Transactions of the Japan Society of Mechanical Engineers C.Japan:1994,60(572).
    [11]李东,袁惠群.超磁致伸缩换能器耦合磁弹性模型与振动特性分析[J].固体力学学报.2011,32(4):365-369.LI Dong,YUAN Huiqun.Analysis on Coupling Magneto-elastic Characteristic of a Giant Magnesotrictive Transducter[J].Chinese Journal of Solid Mechanics,2011,32(4):365-369.
    [12]杨理华,李践飞,吴海平,等.超磁致伸缩作动器非线性模型辨识研究[J].振动与冲击,2015,34(18):142-146.YANG Lihua,LI Jianfei,WU Haiping,et al.Parameter Identification of Nonlinear Model of Giant Magnetostrictive Actuator[J].Journal of Vibration and Shock,2015,34(18):142-146.
    [13]JIA Z,LIU H,WANG F,et al.A Novel Magnegostricive Static Force Sensor Based on the Giant Magnetostrictive Material[J].Measurement,2011,(44):88-95.
    [14]WANG T,ZHOU Y.Nonlinear Dynamic Model with Multifields Coupling Effects for Giant Magnetostrictive Actuators[J].International Journal of Solid Structures,2013,(50):2970-2979.
    [15]王博文,曹淑瑛,黄文美.磁致伸缩材料及器件[M].北京:冶金工业出版社,2008.WANG Bowen,CAO Shuying,HUANG Wenmei.Magnetostrictive Materials and Devices[M].Beijing:Metallurgical Industry Press,2008.
    [16]贾振元,郭东明.超磁致伸缩微位移执行器原理与应用[M].北京:科学出版社,2008.JIA Zhenyuan,GUO Dongming.Theory and Applications of Giant Magnetostrictive Micro-displacement Actuator[M].Beijing:China Science Press,2008.
    [17]TANAKA H,SATO Y,URAI T.Development of a Commom-rail Proportional Injector Controlled by a Tandem Arrayed Giant Magnetostrictive Actuator[J].Jsae Rev,2001,22(4):369-371.
    [18]OLABI A G,GRUNWALD A.Design and Application of Magnetostrictive Materials[J].Materials&Design,2008,(29):469-483.
    [19]HONG C C.Application of a Magnetostrictive Actuator[J].Materials&Design,2013,(46):617-621.
    [20]高晓辉,刘永光,裴忠才.超磁致伸缩作动器小回线动态J-A模型[J].北京航空航天大学学报,2016,42(12):2648-2653.GAO Xiaohui,LIU Yongguang,PEI Zhongcai.The Dynamic J-A Model of Small Back Line of Giant Magnetostrictive Actuator[J].Journal of Beihang University of Aeronautics and Astronautics,2016,42(12):2648-2653.
    [21]程霞,安平,王传礼.超磁致伸缩两级电液伺服阀的结构及建模研究[J].机床与液压,2011,39(03):83-85.CHENG Xia,AN Ping,WANG Chuanli.Research on Structure and Modeling of Giant Magnetostrictive Electrohydraulic Serve Value[J].Machine Tool&Hydraulic,2011,39(3):83-85.
    [22]田源道.电液伺服控制技术[M].北京:航空工业出版社,2008.TIAN Yuandao.Technology of Electro-hydraulic Servo-values[M].Beijing:Aviation Industry,2008.
    [23]左希庆,刘国文,江海兵,等.2D电液伺服流量阀特性研究[J].农业机械学报,2017,48(2):400-406.ZUO Xiqing,LIU Guowen,JIANG Haibing,et al.Characteristics of Airborne 2D Electro-hydraulic Servo Flow Valve[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(2):400-406.
    [24]訚耀保.喷嘴挡板式电液伺服阀结构的演变过程[J].流体传动与控制,2017,(1):54-59.YIN Yaobao.Structure Evolution Process of Nozzle Baffle Electro-hydraulic Servo Valve[J].Fluid Power Transmission and Control,2017,(1):54-59.
    [25]KARUNANIDHI S,SINGAPERUMAL M.Design,Analysis and Simulation of Magnetostrictive Actuator and its Application to High Dynamic Valve[J].Sensors and Actuators A:Physical,2010.
    [26]常家庆.基于CFD和FEM的超磁致伸缩驱动水压伺服阀的性能研究[D].北京:北京工业大学,2011.CHANG Jiaqing.Performance Study on Giant Magnetostrictive Actuated Water Hydraulic Serve Value Based on CFD and FEM[D].Beijing:Beijing University of Technology,2011.
    [27]WANG Xinhua,LI Wei,RUAN Zhongyan,et al.Research on Properties of Water Hydraulic Serve Value Driven by Diphase Oppositing Giant Magnetostrictive Actuator[C].2010 International Conference on Measuring Technology and Mechatronics Automation,Conference,2010.
    [28]王传礼.基于GMM转换器喷嘴挡板伺服阀的研究[D].杭州:浙江大学,2005.WANG Chuanli.Research on the Nozzle Flapper Serve Value Drived by GMM Actuator[D].Hangzhou:Zhejiang University,2005.
    [29]王春行.液压控制系统[M].北京:机械工业出版社,1999.WANG Chunxing.Hydraulic Control System[M].Beijing:China Machine Press,1999.
    [30]李跃松,朱玉川,吴洪涛.超磁致伸缩执行器驱动的射流伺服阀参数优化[J].航空学报,2011,32(7):1336-1343.LI Yuesong,ZHU Yuchuan,WU Hongtao.Parameter Optimization of Jet-pipe Servo Valve Driven by Giant Magnetostrictive Actuator[J].Acta Aeronauticaet Astronautica Sinica,2011,32(7):1336-1343.
    [31]李跃松.超磁致伸缩射流伺服阀的理论与实验研究[D].南京:南京航空航天大学,2014.LI Yuesong.Theoretical and Experiment Research on Deflector Jet Servo Value Driven by Giant Magnetostrictive Actuator[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.
    [32]王传礼,吴晓磊,周禾清,等.超磁致伸缩直动式高频电液伺服阀的建模与动态仿真研究[J].机床与液压,2013,19(41):15-17.WANG Chuanli,WU Xiaolei,ZHOU Heqing,et al.Research on Modeling and Dynamic Simulation of Giant Magnetostrictive Direct Driven High Frequency Electro-hydraulic Servo Value[J].Machine Tool and Hydraulics,2013,19(41):15-17.
    [33]李磊,赵升吨,范淑琴.电磁直驱式大规格电液伺服阀的研究现状和发展趋势[J].重型机械,2012,(3):17-24.LI Lei,ZHAO Shengdun,FAN Shuqin.Research Status and Development Trend of Large Electromagnetic Direct Drive Electro-hydraulic Servo-value[J].Heavy Machinery,2012,(3):17-24.
    [34]张庚云.直驱式电液伺服阀压力控制系统理论研究与仿真[J].煤矿机械,2015,36(4):82-85.ZHANG Gengyun.Theoretical Study and Simulation Experiment of Direct Drive Electro-hydraulic Serve Pressure Control System[J].Coal Mine Machinery,2015,36(4):82-85.
    [35]YANG Z,HE Z,LI D,et al.Direct Drive Servo Value Based on Magnetostrictive Actuator:Multi-coupled Modeling and Its Compound Control Strategy[J].Sensors and Actuators A:Physical,2015,(235):119-130.
    [36]URAI T,TANAKA H.Development of a Giant Magnetostrictive Actuator and the Application to a Servo Value[J].Transactions of the Japan Hydraulics and Pneumatics Society,2001,32(3):53-57.
    [37]吴晓磊.基于GMM转换器直动式电液伺服阀的机理研究[D].淮南:安徽理工大学,2013.WU Xiaolei.Mechanism Study of Direct Driven Electro-hydraulic Serve Value Based on Actuator[D].Huainan:Anhui:Anhui University of Science and Technology,2013.
    [38]LI L,ZHANG C,YAN B,et al.Research of a Giant Magnetostrictive Value with Internal Cooling Structure[J].IEEE Transactions on Magnetics 2011,47(10):2897-2900.
    [39]杨朝舒,何忠波,白鸿柏,等.柔性铰链放大式超磁致伸缩致动器磁弹耦合模型[J].航空动力学报,2015,30(6):1498-1506.YANG Zhaoshu,HE Zhongbo,BAI Hongbai,et al.Magnetic-elastic Coupled Model of Giant Magnetostrictive Actuator with Flexure-hinges Amplifier[J].Journal of Aerospace Power,2013,30(6):1498-1506.
    [40]俞军涛,焦宗夏,吴帅.基于液压微位移放大结构的新型压电陶瓷直接驱动阀设计及仿真[J].机械工程学报,2013,49(2):151-158.YU Juntao,JIAO Zongxia,WU Shuai.Design and Simulation Study on New Servo Valve Direct Driven by Piezoelectric Actuator Using Hydraulic Amplification[J].Journal of Mechanical Engineering,2013,49(2):151-158.
    [41]YOON H,WASHINGTON G.A Millimeter-stroke Piezoelectric Hybrid Actuator Using Hydraulic Displacement Amplification[C].IEEE ISIE,2006.
    [42]赵正龙,何忠波,李冬伟,等.骨导耳听器发音振子的弓张结构设计仿真研究[J].计算机仿真,2016,5(33):235-239.ZHAO Zhenglong,HE Zhongbo,LI Dongwei,et al.Analysis and Research on the Bow-type Structure of GMM Pronunciation Vibrator[J].Computer Simulation,2016,5(33):235-239.
    [43]LOBONTIU N,PAINE J S N,OMALLEY E,et al.Parabolic and Hyperbolic Flexure Hinges:Flexibility,Motion Precision and Stress Characterization Based on Compliance Closed-form Equations[J].Precision Engineering.2002,(26):183-192.
    [44]杨朝舒,何忠波,李冬伟,等.液压放大式超磁致伸缩直驱式伺服阀的设计与实验[J].航空动力学报,2015,30(7):1772-1783.YANG Zhaoshu,HE Zhongbo,LI Dongwei,et al.Design and Experiment of Hydraulic Amplified Direct Drive Value Based on Giant Magnetostrictive Material[J].Journal of Aerospace Power,2015,30(7):1772-1783.
    [45]邱大龙,田冬林,刘浩,等.基于GMM直动阀位移放大机构的结构研究[J].液压与气动,2013,(11):90-93.QIU Dalong,TIAN Donglin,LIU Hao,et al.Research on Structures for Displacement Amplifier of Direct-acting Valve Based on GMM[J].Chinese Hydraulics&Pneumatics,2013,25(11):90-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700