用户名: 密码: 验证码:
微米晶单斜氧化锆高压相变制备亚微米四方多晶氧化锆
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of Submicron Tetragonal Polycrystalline ZrO_2 by the Transformation of Micro Monoclinic ZrO_2 under High Pressure
  • 作者:董丙舜 ; 王海阔 ; 仝斐斐 ; 侯志强 ; 李振 ; 刘童 ; 臧金浩 ; 杨西贵
  • 英文作者:DONG Bingshun;WANG Haikuo;TONG Feifei;HOU Zhiqiang;LI Zhen;LIU Tong;ZANG Jinhao;YANG Xigui;School of Physics and Engineering, Zhengzhou University;Institute of Materials Press-Treatment, School of Materials Science and Engineering,Henan University of Technology;
  • 关键词:高压 ; 相变 ; 微米晶 ; 亚微米晶 ; 氧化锆
  • 英文关键词:high pressure;;phase transformation;;micro crystal;;submicron crystal;;ZrO2
  • 中文刊名:GYWL
  • 英文刊名:Chinese Journal of High Pressure Physics
  • 机构:郑州大学物理工程学院;河南工业大学材料科学与工程学院材料压处理研究所;
  • 出版日期:2019-04-03 15:27
  • 出版单位:高压物理学报
  • 年:2019
  • 期:v.33;No.148
  • 基金:国家自然科学基金青年科学基金(11504087,11804307);; 郑州市科技重大专项(174PZDZX567)
  • 语种:中文;
  • 页:GYWL201902004
  • 页数:9
  • CN:02
  • ISSN:51-1147/O4
  • 分类号:24-32
摘要
高压相变已逐渐发展成为一种制备纳米/亚微米多晶陶瓷块体材料的有效方法。高压可以抑制原子的长程扩散进而抑制晶粒长大,高压下截获的新相不受初始材料晶粒尺寸的制约,通过热力学调控可以得到晶粒尺寸更小的多晶块体材料。陶瓷材料在特定热力学条件下通常会发生相变,新相的形成要经历形核、生长的过程。采用晶粒尺寸为2μm的单斜ZrO2与晶粒尺寸为50 nm的Y2O3以97:3的摩尔比混合,在5.5 GPa、800~1700℃温压区间内对初始材料进行烧结,采用X射线衍射、扫描电镜、透射电镜对所得样品进行表征。研究结果表明:高压下截获了单斜相和亚微米四方相复合的多晶ZrO2块体材料,1200、1400、1600和1700℃温度下获得的四方相的平均晶粒尺寸为(145±62) nm、(246±165) nm、(183±62) nm和(245±107) nm。利用高压相变以微米晶制备细晶粒多晶块体材料,可以避免常规方法中以纳米粉末为初始材料制备细晶粒多晶块体材料存在的团聚、吸附及晶粒长大的问题,进而发展一种以微米晶为初始材料通过高压相变制备高性能细晶粒多晶块体材料的方法。
        The transformation-assisted consolidation under pressure has been demonstrated to be a promising method to fabricate the nano or submicron polycrystalline ceramic materials. The high pressure suppresses the long-range diffusion of the atoms and, consequently, restrains the grain coarsening. The new phases produced at high pressure could show finer grains under the appropriate thermodynamic conditions, which are not subject to the grain size of the raw materials. Ceramic materials exhibit the existence of the transformations under certain thermodynamic conditions and the formation of new phases generally undergoes the nucleation and growth. In the present work, monoclinic microcrystal ZrO_2 with average grain size of2 μm and Y_2O_3 with average grain size of 50 nm were mixed in molar ratio of 97∶3. The preparation of the samples was carried out by sintering at 5.5 GPa and temperatures of 800–1700 °C using the high pressure cubic cell, and the sample characterization was performed via the X-ray diffraction, scanning electron microscope and transmission electron microscopy. It was found that the monoclinic and submicron tetragonal composite polycrystalline ZrO_2 in bulk is obtained under high pressure and high temperature. The average grain size of tetragonal ZrO_2 fabricated at 1200, 1400, 1600 and 1700 °C is(145±62) nm,(246±165) nm,(183±62) nm and(245±107) nm, respectively. The synthesis of the fine-grained polycrystalline materials by the transformation under high pressure can solve the problems of agglomeration, adsorption and grain coarsening caused by the nanopowders as the starting materials in the conventional approach, which would be an alternative route to fabricate the fine-grained polycrystalline materials with the enhanced performances.
引文
[1]HALL E O.The deformation and ageing of mild steel:III discussion of results[J].Proceedings of the Physical Society Section B,1951,64(9):747-753.
    [2]PETCH N J.The cleavage strength of polycrystals[J].Journal of the Iron and Steel Institute,1953,174:25-28.
    [3]SOLOZHENKO V L,KURAKEVYCH O O,LE GODEC Y.Creation of nanostuctures by extreme conditions:high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J].Advanced Materials,2012,24(12):1540-1544.
    [4]LIU G,KOU Z,YAN X,et al.Submicron cubic boron nitride as hard as diamond[J].Applied Physics Letters,2015,106(12):121901.
    [5]TIAN Y,XU B,YU D,et al.Ultrahard nanotwinned cubic boron nitride[J].Nature,2013,493(7432):385-388.
    [6]徐波,田永君.纳米孪晶超硬材料的高压合成[J].物理学报,2017,66(3):036201.XU B,TIAN Y J.High pressure synthesis of nanotwinned ultrahard materials[J].Acta Physica Sinica,2017,66(3):036201.
    [7]IRIFUNE T,KURIO A,SAKAMOTO S,et al.Ultrahard polycrystalline diamond from graphite[J].Nature,2003,421(6923):599-600.
    [8]王海阔,张相法,位星,等.直接转化法合成大尺寸纯相多晶金刚石[J].金刚石与磨料磨具工程,2018,38(1):1-6.WANG H K,ZHANG X F,WEI X,et al.Synthesizing bulk polycrystalline diamond by method of direct phase transition[J].Diamond&Abrasives Engineering,2018,38(1):1-6.
    [9]HUANG Q,YU D,XU B,et al.Nanotwinned diamond with unprecedented hardness and stability[J].Nature,2014,510(7504):250.
    [10]EHRE D,GUTMANAS E Y,CHAIM R.Densification of nanocrystalline Mg O ceramics by hot-pressing[J].Journal of the European Ceramic Society,2005,25(16):3579-3585.
    [11]TANG F,HAGIWARA M,SCHOENUNG J M.Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder[J].Scripta Materialia,2005,53(6):619-624.
    [12]BINNER J,ANNAPOORANI K,PAUL A,et al.Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering[J].Journal of the European Ceramic Society,2008,28(5):973-977.
    [13]DAHL P,KAUS I,ZHAO Z,et al.Densification and properties of zirconia prepared by three different sintering techniques[J].Ceramics International,2007,33(8):1603-1610.
    [14]SALAMON D,KALOUSEK R,MACA K,et al.Rapid grain growth in 3Y-TZP nanoceramics by pressure-assisted and pressure-less SPS[J].Journal of the American Ceramic Society,2015,98(12):3706-3712.
    [15]MAZAHERI M,ZAHEDI A M,HEJAZI M M.Processing of nanocrystalline 8 mol%yttria-stabilized zirconia by conventional,microwave-assisted and two-step sintering[J].Materials Science and Engineering A,2008,492(1/2):261-267.
    [16]ZHANG L,WANG Y,LV J,et al.Erratum:materials discovery at high pressures[J].Nature Reviews Materials,2017,2(4):17005.
    [17]YAVETSKIY R P,BAUMER V N,DANYLENKO M I,et al.Transformation-assisted consolidation of Y2O3:Eu3+nanospheres as a concept to optical nanograined ceramics[J].Ceramics International,2014,40(2):3561-3569.
    [18]WOLLMERSHAUSER J A,FEIGELSON B N,GORZKOWSKI E P,et al.An extended hardness limit in bulk nanoceramics[J].Acta Materialia,2014,69(5):9-16.
    [19]KEAR B H,COLAIZZI J,MAYO W E,et al.On the processing of nanocrystalline and nanocomposite ceramics[J].Scripta Materialia,2001,44(8/9):2065-2068.
    [20]LIAO S C,COLAIZZI J,CHEN Y,et al.Refinement of nanoscale grain structure in bulk titania via a transformation-assisted consolidation(TAC)method[J].Journal of the American Ceramic Society,2000,83(9):2163-2169.
    [21]LIAO S C,CHEN Y J,MAYO W E,et al.Transformation-assisted consolidation of bulk nanocrystalline Ti O2[J].Nanostructured Materials,1999,11(4):553-557.
    [22]LIAO S C,PAE K D,MAYO W E.Retention of nanoscale grain size in bulk sintered materials via a pressure-induced phase transformation[J].Nanostructured Materials,1997,8(6):645-656.
    [23]LIAO S C,PAE K D,MAYO W E.High pressure and low temperature sintering of bulk nanocrystalline Ti O2[J].Materials Science and Engineering A,1995,204(1/2):152-159.
    [24]DENRY I,KELLY J R.State of the art of zirconia for dental applications[J].Dental Materials,2008,24(3):299-307.
    [25]RüHLE M.Microscopy of structural ceramics[J].Advanced Materials,1997,9(3):195-217.
    [26]YASHIMA M,HIROSE T,KAKIHANA M,et al.Size and charge effects of dopant M on the unit-cell parameters of monoclinic zirconia solid solutions Zr0.98M0.02O2-δ(M=Ce,La,Nd,Sm,Y,Er,Yb,Sc,Mg,Ca)[J].Journal of the American Ceramic Society,1997,80(1):171-175.
    [27]DENRY I,KELLY J R.Emerging ceramic-based materials for dentistry[J].Journal of Dental Research,2014,93(12):1235-1242.
    [28]PORTER D L,HEUER A H.Mechanisms of toughening partially stabilized zirconia(PSZ)[J].Journal of the American Ceramic Society,1977,60(3/4):183-184.
    [29]WHITNEY E D.Effect of pressure on monoclinic-tetragonal transition of zirconia:thermodynamics[J].Journal of the American Ceramic Society,1962,45(12):612-613.
    [30]WHITNEY E D.Electrical resistivity and diffusionless phase transformations of zirconia at high temperatures and ultrahigh pressures[J].Journal of the Electrochemical Society,1965,112(1):91-94.
    [31]VAHLDIEK F W,ROBINSON L B,LYNCH C T.Tetragonal zirconium oxide prepared under high pressure[J].Science,1963,142(3595):1059-1060.
    [32]KULCINSKI G L.High-pressure induced phase transition in Zr O2[J].Journal of the American Ceramic Society,1968,51(10):582-583.
    [33]ALZYAB B,PERRY C H,INGEL R P.High-pressure phase transitions in zirconia and yttria-doped zirconia[J].Journal of the American Ceramic Society,1987,70(10):760-765.
    [34]RHODES W H.Agglomerate and particle size effects on sintering yttria-stabilized zirconia[J].Journal of the American Ceramic Society,1981,64(1):19-22.
    [35]MAGLIA F,TREDICI I G,ANSELMI-TAMBURINI U.Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm[J].Journal of the European Ceramic Society,2013,33(6):1045-1066.
    [36]王海阔,任瑛,贺端威,等.六面顶压机立方压腔内压强的定量测量及受力分析[J].物理学报,2017,66(9):090702.WANG H K,REN Y,HE D W,et al.Force analysis and pressure quantitative measurement for the high pressure cubic cell[J].Acta Physica Sinica,2017,66(9):090702.
    [37]ANDERSSON G,SUNDQVIST B,B?CKSTR?M G.A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa:results for Bi,Ba,Ni,and Si[J].Journal of Applied Physics,1989,65(10):3943-3950.
    [38]王海阔,贺端威,许超,等.基于国产铰链式六面顶压机的大腔体静高压技术研究进展[J].高压物理学报,2013,27(5):633-661.WANG H K,HE D W,XU C,et al.Development of large volume-high static pressure techniques based on the hinge-type cubic presses[J].Chinese Journal of High Pressure Physics,2013,27(5):633-661.
    [39]陈晓芳,贺端威,王福龙,等.基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定[J].高压物理学报,2009,23(2):98-104.CHEN X F,HE D W,WANG F L,et al.Design and temperature calibration for heater cell of split-sphere high pressure apparatus based on the hinge-type cubic-anvil Press[J].Chinese Journal of High Pressure Physics,2009,23(2):98-104.
    [40]TORAYA H,YOSHIMURA M,SOMIYA S.Calibration curve for quantitative analysis of the monoclinic-tetragonal Zr O2system by X-ray diffraction[J].Journal of the American Ceramic Society,1984,67(6):C-119-C-121.
    [41]KROGSTAD J A,LEPPLE M,GAO Y,et al.Effect of yttria content on the zirconia unit cell parameters[J].Journal of the American Ceramic Society,2011,94(12):4548-4555.
    [42]IGAWA N,ISHII Y,NAGASAKI T,et al.Crystal structure of metastable tetragonal zirconia by neutron powder diffraction study[J].Journal of the American Ceramic Society,1993,76(10):2673-2676.
    [43]MICHEL D,MAZEROLLES L,JORBA M P Y.Fracture of metastable tetragonal zirconia crystals[J].Journal of Materials Science,1983,18(9):2618-2628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700