用户名: 密码: 验证码:
生物铁法强化污水处理作用机理与应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Mechanism and Application of Bioferric Process for Wastewater Enhanced Treatment
  • 作者:赵炜 ; 孙强 ; 李杰 ; 王亚娥
  • 英文作者:ZHAO Wei;SUN Qiang;LI Jie;WANG Ya'e;School of Environmental and Municipal Engineering, Lanzhou Jiaotong University;
  • 关键词:Fe(Ⅲ)-生物铁法 ; Fe(Ⅱ)-生物铁法 ; Fe~0-生物铁法 ; 厌氧生物铁法 ; 污水处理
  • 英文关键词:Fe(Ⅲ)-bioferric process;;Fe(Ⅱ)-bioferric process;;Fe~0-bioferric process;;anaerobic bioferric process;;wastewater treatment
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:兰州交通大学环境与市政工程学院;
  • 出版日期:2019-01-04 16:23
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.324
  • 基金:国家自然科学基金项目(51468030,51768032);; 兰州市科技局项目(2016-3-119)
  • 语种:中文;
  • 页:SCLJ201901003
  • 页数:5
  • CN:01
  • ISSN:33-1127/P
  • 分类号:17-21
摘要
归纳了生物铁法的类型和适用条件,分析了不同生物铁法强化污水生物处理的作用机理、优缺点和运行成本;总结了各类型生物铁法在脱氮除磷和难降解有机废水处理中的应用研究现状。与Fe(Ⅲ)-生物铁法和Fe(Ⅱ)-生物铁法相比,认为Fe~0-生物铁法具有投资和运行成本低、工艺简单、强化效率高等特点,是生物铁法强化污水处理研究与应用的新方向。为了能更好地实现Fe~0-生物铁法工程化应用,还需在新型零价铁材料的开发和工艺参数的优化等领域进行进一步研究。
        The type and application condition of different bioferric process in wastewater treatment was concluded, strengthening mechanism, advantages,disadvantages and operating cost were analyzed simultaneously. The research situation of applications of different bioferric process in nitrogen and phosphorus removal and refractory organic wastewater treatment were also summarized. Compared with Fe(Ⅲ)-bioferric process and Fe(Ⅱ)-bioferric process, Fe~0-bioferric process was characterized by low investment and operating cost, simple process and high efficiency, which was supposed to be the new trend of research and application on biological enhanced wastewater treatment. Meanwhile, in order to promote the widely engineering application of Fe~0-bioferric process, more research should be focused on the development of new type zero-valent iron materials and optimization of technological parameters.
引文
[1]程汉林.生物铁法和生物铁填料法在难降解有机废水处理中的应用[J].环境技术,2004,22(3):30-31.
    [2]ZOU H Y,XI D L.Performance of bioferric-submerged membrane bioreactor for dyeing wastewater treatment[J].Frontiers of Environmenta Science and Engineering in China,2007,1(3):374-380.
    [3]冯雷雨,孙力平.生物铁法处理维生素B1生产废水[J].中国给水排水,2005,12:41-43.
    [4]刘艳,王东文,陈晓谋,等.生物铁污泥特性分析及其处理金属清洗废水研究[J].水处理技术,2015,41(1):81-85.
    [5]刘晓云,毕学军.生物铁法处理高浓度氨氮生活污水效果研究[J]中国高新技术企业,2009(11):101-102.
    [6]WEI X M,VAJRALA N,HAUSEr L,et al.Iron nutrition and physiological responses to iron stress in Nitrosomonas europaea[J].Archives of Microbiology,2006,186(2):107-118.
    [7]龙腾锐,孟雪征,赖震宏.Fe3+对活性污泥系统的影响[J].给水排水2004,30(12):15-17.
    [8]袁磊,毕学军.铁盐对活性污泥微生物DHA与ETS活性的影响研究[J].环境工程,2010,28(6):97-99,107.
    [9]韩甜甜.复合铁酶促活性污泥工艺生物脱氮除磷效能及微生物多样性研究[D].青岛:青岛理工大学,2011.
    [10]王文娟,李杰,王亚娥.铁离子与其他金属离子间共效应对生化反应处理效果的影响研究[J].环境科学与管理,2016,01:76-79.
    [11]嵇斌,李杰,豆宁龙.不同价态铁强化SBR除磷研究[J].工业水处理,2018,38(3):17-20.
    [12]ZHANG J X,ZHANG Y B,LI Y,et al.Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode[J]Bioresource Technology,2012,114:102-108.
    [13]李杰,李文譞,魏志勇,等.海绵铁/微生物协同互促除磷研究[J].中国给水排水,2013,29(23):124-127.
    [14]严子春,何强,龙腾锐,等.多孔富铁填料曝气过滤除磷机理研究[J].环境工程学报,2010(6):1305-1308.
    [15]高飞.复合铁酶促活性污泥生物脱氮除磷技术处理典型中低浓度城市污水的现场中试研究[D].青岛:青岛理工大学,2012.
    [16]钱捷捷,王新华,李秀芳.等.铁离子对膜生物反应器中污泥性质及膜污染的影响[J].安全与环境学报,2011,11(4):68-72.
    [17]WANG Y E,LI J ZHAI S Y,et al.Enhanced phosphorus removal by microbial Collaborating sponge iron[J].Water Science and Technology,2015,72(8):1257-1265.
    [18]WANG X M,WAITE T D.Iron speciation and iron species transformation in activated sludge membrane bioreactors[J].Water Research,2010,44(11):3511-3521.
    [19]蒲志华,吴连成,徐金呜.用生物铁法处理(L339)选矿废水[J].化工矿山技术,1989(2):58-60.
    [20]张璎.Fe SO4同步沉析对活性污泥生物除磷抑制作用的实验研究[D].武汉:武汉科技大学,2015.
    [21]谢鸿飞,杨军,何义亮.硫酸亚铁法深度处理城市生活污水的效能[J].净水技术,2013,32(1):19-21.
    [22]李正.生物海绵铁在好氧除磷过程中的理论研究[D].兰州:兰州交通大学,2014.
    [23]FEITZ A J,JOO S H,GUAN J,et al.Oxidative transformation of contaminants using colloidal zero-valent iron[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,26:88-94.
    [24]SUN Y K,LI J X,HUANG T L,et al.The influences of iron characteristics,operating conditions and solution chemistry on contaminants removal by zero-valent iron:A review[J].Water Research,2016,100:277-295.
    [25]AN Y,LI T,JIN Z,et al.Decresaing ammonium generation using hydrogentrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron[J].Science of the Total Enironment,2009,407:5465-5470.
    [26]沈燕红.纳米铁添加协同生物脱氮除磷效果及其对微生物的影响[D].杭州:浙江大学,2014.
    [27]王新奇,程爱华.生物海绵铁去除生活污水中氨氮的性能研究[J].科学技术与工程,2014,14(9):284-287.
    [28]冯娟娟,王亚娥,李杰等.新型富铁多孔复合填料强化生化处理效能研究[J].中国给水排水,2013,29(3):24-28.
    [29]王亚娥,冯娟娟,李杰等.不同Fe(III)对活性污泥异化铁还原耦合脱氮的影响及机理初探[J].环境科学学报,2014,34(2):377-384.
    [30]翟思媛.活性污泥异化Fe(III)还原协同除磷特性及影响因素研究[D].兰州:兰州交通大学,2014.
    [31]汤文琪.Fe0-厌氧微生物联合体系处理活性染料的研究[D].湘潭:湘潭大学,2009.
    [32]林港.零价铁强化厌氧处理难降解废水的实验研究[D].大连:大连理工大学,2012.
    [33]罗春香.零价铁/厌氧微生物联合体系降解硝基苯及机理[D].湘潭:湘潭大学,2009.
    [34]梁俊倩,吴锦华,李平,等.零价铁与厌氧微生物协同还原地下水中的硝基苯[J].环境工程学报,2012,6(8):2512-2516.
    [35]陈玲,刘强,陈皓,等.不同价态铁对硝基苯的厌氧降解及影响因素[J].同济大学学报(自然科学版),2009,37(4):510-514.
    [36]ZHANG M,ZHENG P,LI W,et al.Performance of nitrate-dependent anaerobic ferrous oxidizing(NAFO)process:A novel prospective technology for autotrophic denitrification[J].Bioresource Technology,2015,179:543-548.
    [37]KUMARASWAMY R,SJOLLEMA K,KUENEN G,et al.Nitratedependent[Fe(II)EDTA]2-oxidation by Paracoccus ferrooxidans sp.nov.,isolated from a denitrifying bioreactor[J].Systematic and Applied Microbiology,2006,29(4):276-286.
    [38]CHAKRABORTY A,RODEN E E,SCHIEBER J,et al.Enhanced growth of Acidovorax sp.strain 2AN during nitrate-dependent Fe(II)oxidation in batch and Continuous-Flow systems[J].Applied and Environmental Microbiology,2011,77(24):8548-8556.
    [39]LI B,TIAN C,ZHANG D,et al.Anaerobic nitrate-dependent iron(II)oxidation by a novel autotrophic bacterium,Citrobacter freundii strain PXL1[J].Geomicrobiology Journal,2014,31(2):138-144.
    [40]LI B H,DENG C N,ZHANG D Y,et al.Bioremediation of nitrateand arsenic-contaminated groundwater using nitrate-dependent Fe(II)Oxidizing Clostridium sp.strain pxl2[J].Geomicrobiology,2016,33:185-193.
    [41]GALLUS C,SCHINK B.Anaerobic degradation of pimelate by newly isolated denitrifying bacteria[J].Microbiology,1994,140:409-416.
    [42]OSHIKI M,ISHII S,YOSHIDA K,et al.Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation(anammox)bacteria[J].Appl Environ Microbiol,2013,79:4087-4093.
    [43]STROUS M,PELLETIER E,MANGENOT S,et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440:790-794.
    [44]CHAUDHURI S K,LACK J G,COATES J D.Biogenic magnetite formation through anaerobic biooxidation of Fe(II)[J].Applied and Environmental Microbiology,2001,67:2844-2848.
    [45]薛蕾,蒯琳萍.一株新反硝化菌的鉴定及在废水处理中的应用[J].环境科学与技术,2008,31(7):98-100.
    [46]ZHANG X X,LI A,SZEWZYK U,et al.Improvement of biological nitrogen removal with nitrate-dependent Fe(II)oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment[J].Bioresource Technology,2016,219:624-631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700