用户名: 密码: 验证码:
硅缓解植物镉毒害的生理生态机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: A review
  • 作者:刘彩凤 ; 史刚荣 ; 余如刚 ; 张铮
  • 英文作者:LIU Caifeng;SHI Gangrong;YU Rugang;ZHANG Zheng;College of Life Sciences,Huaibei Normal University;
  • 关键词: ; 毒害 ; 镉转运 ; 避性 ; 耐性
  • 英文关键词:silicon;;cadmium toxicity;;cadmium translocation;;avoidance;;tolerance
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:淮北师范大学生命科学学院;
  • 出版日期:2017-08-14 14:08
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(31370515,31671599)
  • 语种:中文;
  • 页:STXB201723005
  • 页数:12
  • CN:23
  • ISSN:11-2031/Q
  • 分类号:42-53
摘要
镉是对生物毒性最强的污染物之一。过量的镉能够抑制植物的生长和光合作用,干扰矿质代谢并诱发氧化胁迫。硅作为一种有益元素,主要以Si(OH)_4的形态通过主动或被动方式被植物体吸收并转运到地上部分。硅对植物镉毒害具有缓解作用,但其缓解机制在不同物种、品种或生态型之间存在显著差异,并表现出一定的硅/镉浓度依赖性。总体上可概括为避性机制和耐性机制。避性机制包括:(1)在器官水平,减少植物根系对镉的吸收及其向地上部的转运;(2)在细胞水平,增强细胞壁对镉的吸附能力,减少共质体中镉的含量。耐性机制包括:(1)诱导细胞产生小分子螯合剂,增强对镉的螯合作用,减少细胞中游离态镉的含量;(2)增强抗氧化机制,减轻氧化胁迫;(3)改善光合作用和无机营养,促进植物生长。从植物对硅的吸收和转运、镉对植物的毒害作用以及硅对缓解植物镉毒害的生理生态机制3个方面进行了综述,并基于目前的研究现状和薄弱之处,对今后的研究重点进行了展望。
        Cadmium is one of the most toxic pollutants, and excessive cadmium can inhibit plant growth and photosynthesis,interfere with mineral metabolism,and induce oxidative stress. Meanwhile,silicon is beneficial to plants and,after being actively or passively absorbed by plant roots and transported to other plant parts,mainly in the form of Si(OH)_4,can alleviate cadmium toxicity. The mechanism underlying silicon-induced cadmium detoxicification in plants varies among species,cultivars,and ecotypes,showing a silicon/cadmium concentration-dependent manner. In general,the silicon-induced reversal of cadmium toxicity can be divided into two main mechanisms: avoidance and tolerance. The avoidance mechanism mainly functions(1) at the organ level,by reducing the absorption of cadmium by plant roots and/or its translocation from roots to shoots,and(2) at the cellular level,by enhancing the cadmium adsorption capacity of the cell wall and,therefore,reducing the influx of cadmium into the symplast. The tolerance mechanism also involves a variety processes,including(1) the induction of low molecular compounds that chelate cadmium ions,thereby reducing free cadmium concentrations;(2) the reduction of oxidative stress by enhancing antioxidant mechanisms; and(3) the improvement of photosynthesis and mineral nutrition,thus promoting plant growth. Here,we review recent advances in the mechanisms underlying cadmium toxicity,the uptake and transport of silicon,and silicon-induced cadmium detoxification in plants. Based on the weakness of previous studies,the need for further research is also discussed.
引文
[1]Shi G R,Cai Q S.Cadmium tolerance and accumulation in eight potential energy crops.Biotechnology Advances,2009,27(5):555-561.
    [2]中华人民共和国环境保护部,国土资源部,全国土壤污染状况调查公报.(2014-04-17).http://www.mep.gov.cn/gkml/hbb/qt/201404/W020140417558995804588.pdf.
    [3]Farooq M A,Dietz K J.Silicon as versatile player in plant and human biology:overlooked and poorly understood.Frontiers in Plant Science,2015,6:994.
    [4]Ma J F.Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses.Soil Science and Plant Nutrition,2004,50(1):11-18.
    [5]Ma J F,Yamaji N.Silicon uptake and accumulation in higher plants.Trends in Plant Science,2006,11(8):392-397.
    [6]Liang Y C,Sun W C,Zhu Y G,Christie P.Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:a review.Environmental Pollution,2007,147(2):422-428.
    [7]Coskun D,Britto D T,Huynh W Q,Kronzucker H J.The role of silicon in higher plants under salinity and drought stress.Frontiers in Plant Science,2016,7:1072.
    [8]Zhang C C,Wang L J,Nie Q,Zhang W X,Zhang F S.Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice(Oryza sativa L.).Environmental and Experimental Botany,2008,62(3):300-307.
    [9]Shi G R,Cai Q S,Liu C F,Wu L.Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes.Plant Growth Regulation,2010,61(1):45-52.
    [10]Feng J P,Shi Q H,Wang X F,Wei M,Yang F J,Xu H N.Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium(Cd)toxicity in Cucumis sativus L.Scientia Horticulturae,2010,123(4):521-530.
    [11]Song A L,Li Z J,Zhang J,Xue G F,Fan F,L Liang Y C.Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L.is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity.Journal of Hazardous materials,2009,172(1):74-83.
    [12]Pontigo S,Ribera A,Gianfreda L,De La Luz Mora M,Nikolic M,Cartes P.Silicon in vascular plants:uptake,transport and its influence on mineral stress under acidic conditions.Planta,2015,242(1):23-37.
    [13]Vaculík M,PavlovicA,Lux A.Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.Ecotoxicology and Environmental Safety,2015,120:66-73.
    [14]Wu J W,Geilfus C M,Pitann B,Mühling K H.Silicon-enhanced oxalate exudation contributes to alleviation of cadmium toxicity in wheat.Environmental and Experimental Botany,2016,131:10-18.
    [15]Rizwan M,Meunier J D,Davidian J C,Pokrovsky O S,Bovet N,Keller C.Silicon alleviates Cd stress of wheat seedlings(Triticum turgidum L.cv.Claudio)grown in hydroponics.Environmental Science and Pollution Research,2016,23(2):1414-1427.
    [16]Ma J F,Mitani N,Nagao S,Konishi S,Tamai K,Iwashita T,Yano M.Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice.Plant Physiology,2004,136(2):3284-3289.
    [17]Mitani N,Ma J F.Uptake system of silicon in different plant species.Journal of Experimental Botany,2005,56(414):1255-1261.
    [18]Takahashi E,Ma J,Miyake Y.The possibility of silicon as an essential element for higher plants.Comments on Agricultural and Food Chemistry,1990,2(2):99-102.
    [19]Ma J F,Goto S,Tamai K,Ichii M.Role of root hairs and lateral roots in silicon uptake by rice.Plant Physiology,2001,127(4):1773-1780.
    [20]Ma J F,Tamai K,Yamaji N,Mitani N,Konishi S,Katsuhara M,Ishiguro M,Murata Y,Yano M.A silicon transporter in rice.Nature,2006,440(7084):688-691.
    [21]Liang Y C,Hua H X,Zhu Y G,Zhang J,Cheng C M,Romheld V.Importance of plant species and external silicon concentration to active silicon uptake and transport.New Phytologist,2006,172(1):63-72.
    [22]Nikolic M,Nikolic N,Liang Y C,Kirkby E A,R9mheld V.Germanium-68 as an adequate tracer for silicon transport in plants.Characterization of silicon uptake in different crop species.Plant Physiology,2007,143(1):495-503.
    [23]Ma J F,Yamaji N,Mitani N,Tamai K,Konishi S,Fujiwara T,Katsuhara M,Yano M.An efflux transporter of silicon in rice.Nature,2007,448(7150):209-212.
    [24]Yamaji N,Mitatni N,Ma J F.A transporter regulating silicon distribution in rice shoots.Plant Cell,2008,20(5):1381-1389.
    [25]Yamaji N,Ma J F.Spatial distribution and temporal variation of the rice silicon transporter Lsi1.Plant Physiology,2007,143(3):1306-1313.
    [26]Mitani N,Yamaji N,Ma J F.Characterization of substrate specificity of a rice silicon transporter,Lsi1.Pflügers Archiv-European Journal of Physiology,2008,456(4):679-686.
    [27]Yamaji N,Ma J F.Further characterization of a rice silicon efflux transporter,Lsi2.Soil Science and Plant Nutrition,2011,57(2):259-264.
    [28]Yamaji N,Ma J F.A transporter at the node responsible for intervascular transfer of silicon in rice.Plant Cell,2009,21(9):2878-2883.
    [29]Mitani N,Chiba Y,Yamaji N,Ma J F.Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice.Plant Cell,2009,21(7):2133-2142.
    [30]Mitani N,Yamaji N,Ma J F.Identification of maize silicon influx transporters.Plant and Cell Physiology,2009,50(1):5-12.
    [31]Yamaji N,Chiba Y,Mitani-Ueno N,Ma J F.Functional characterization of a silicon transporter gene implicated in silicon distribution in barley.Plant Physiology,2012,160(3):1491-1497.
    [32]Chiba Y,Mitani N,Yamaji N,Ma J F.Hv Lsi1 is a silicon influx transporter in barley.Plant Journal,2009,57(5):810-818.
    [33]Montpetit J,Vivancos J,Mitani-Ueno N,Yamaji N,Rémus-Borel W,Belzile F,Ma J F,Bélanger R R.Cloning,functional characterization and heterologous expression of Ta Lsi1,a wheat silicon transporter gene.Plant Molecular Biology,2012,79(1-2):35-46.
    [34]Mitani-Ueno N,Yamaji N,Ma J F.Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake.Plant Signaling&Behavior,2011,6(7):991-994.
    [35]Mitani N,Yamaji N,Ago Y,Iwasaki K,Ma J F.Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation.Plant Journal,2011,66(2):231-240.
    [36]Deshmukh R K,Vivancos J,Guérin V,Sonah H,LabbéC,Belzile F,Bélanger R R.Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice.Plant Molecular Biology,2013,83(4-5):303-315.
    [37]Hodson M J,Sangster A G.X-ray microanalysis of the seminal root of Sorghum bicolor with particular reference to silicon.Annals of Botany,1989,64(6):659-667.
    [38]Sakurai G,Satake A,Yamaji N,Mitani-Ueno N,Yokozawa M,Feugier F G,Ma J F.In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots.Plant and Cell Physiology,2015,56(4):631-639.
    [39]徐呈祥,刘友良.植物对Si的吸收、运输和沉积.西北植物学报,2006,26(5):1071-1078.
    [40]Mitani N,Ma J F,Iwashita T.Identification of the silicon form in xylem sap of rice(Oryza sativa L.).Plant and Cell Physiology,2005,46(2):279-283.
    [41]Casey W H,Kinrade S D,Knight C T G,Rains D W,Epstein E.Aqueous silicate complexes in wheat,Triticum aestivum L.Plant,Cell&Environment,2004,27(1):51-54.
    [42]李晓艳,孙立,吴良欢.不同吸硅型植物各器官硅素及氮、磷、钾素分布特征.土壤通报,2014,45(1):193-198.
    [43]Gallego S M,Pena L B,Barcia R A,Azpilicueta C E,Iannone M F,Rosales E P,Zawoznik M S,Groppa M D,Benavides M P.Unravelling cadmium toxicity and tolerance in plants:Insight into regulatory mechanisms.Environmental and Experimental Botany,2012,83:33-46.
    [44]Nazar R,Iqbal N,Masood A,Khan M I R,Syeed S,Khan N A.Cadmium toxicity in plants and role of mineral nutrients in its alleviation.American Journal of Plant Sciences,2012,3(10):24162.
    [45]王晓娟,王文斌,杨龙,金樑,宋瑜,姜少俊,秦兰兰.重金属镉(Cd)在植物体内的转运途径及其调控机制.生态学报,2015,35(23):7921-7929.
    [46]Amirthalingam T,Velusamy G,Pandian R.Cadmium-induced changes in mitotic index and genotoxicity on Vigna unguiculata(Linn.)Walp.Journal of Environmental Chemistry and Ecotoxicology,2013,5(3):57-62.
    [47]Krzeslowska M.The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy.Acta Physiologiae Plantarum,2011,33(1):35-51.
    [48]郑绍建.细胞壁在植物抗营养逆境中的作用及其分子生理机制.中国科学:生命科学,2014,44(4):334-341.
    [49]Ye Y,Li Z,Xing D.Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death.Plant,Cell&Environment,2013,36(1):1-15.
    [50]Zhang L P,Pei Y X,Wang H J,Jin Z P,Liu Z Q,Qiao Z J,Fang H H,Zhang Y J.Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L.ssp.pekinensis.Oxidative Medicine and Cellular Longevity,2015,2015:804603.
    [51]Lysenko E A,Klaus A A,Pshybytko N L,Kusnetsov V V.Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize.Photosynthesis Research,2015,125(1-2):291-303.
    [52]袁祖丽,马新明,韩锦峰,李春明,吴葆存.镉污染对烟草叶片超微结构及部分元素含量的影响.生态学报,2005,25(11):2919-2927.
    [53]Rana S.Plant Response towards Cadmium Toxicity:An Overview.Annals of Plant Sciences,2015,4(7):1162-1072.
    [54]Ekmekci Y,Tanyola9 D,Ayhan B.Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars.Journal of Plant Physiology,2008,165(6):600-611.
    [55]Shi G R,Cai Q S.Photosynthetic and anatomic responses of peanut leaves to cadmium stress.Photosynthetica,2008,46(4):627-630.
    [56]Shi G R,Sun L,Wang X M,Liu C F.Leaf responses to iron nutrition and low cadmium in peanut:anatomical properties in relation to gas exchange.Plant and Soil,2014,375(1-2):99-111.
    [57]Perfus-Barbeoch L,Leonhardt N,Vavasseur A,Forestier C.Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status.Plant Journal,2002,32(4):539-548.
    [58]Liu J G,Liang J S,Li K Q,Zhang Z J,Yu B Y,Lu X L,Yang J C,Zhu Q S.Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress.Chemosphere,2003,52(9):1467-1473.
    [59]张然然,张鹏,都韶婷.镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展.应用生态学报,2016,27(3):981-992.
    [60]Sandalio L M,Dalurzo H C,Gómez M,Romero-Puertas M C,del Río L A.Cadmium-induced changes in the growth and oxidative metabolism of pea plants.Journal of Experimental Botany,2001,52(364):2115-2126.
    [61]Groppa M D,Ianuzzo M P,Rosales E P,Vázquez S C,Benavides M P.Cadmium modulates NADPH oxidase activity and expression in sunflower leaves.Biologia Plantarum,2012,56(1):167-171.
    [62]Wang L J,Wang Y H,Chen Q,Cao W D,Li M,Zhang F.Silicon induced cadmium tolerance of rice seedlings.Journal of Plant Nutrition,2000,23(10):1397-1406.
    [63]Nwugo C C,Huerta A J.Silicon-induced cadmium resistance in rice(Oryza sativa).Journal of Plant Nutrition and Soil Science,2008,171(6):841-848.
    [64]Tripathi D K,Singh V P,Kumar D,Chauhan D K.Rice seedlings under cadmium stress:effect of silicon on growth,cadmium uptake,oxidative stress,antioxidant capacity and root and leaf structures.Chemistry and Ecology,2012,28(3):281-291.
    [65]Liu J,Ma J,He C W,Li X L,Zhang W J,Xu F S,Lin Y J,Wang L J.Inhibition of cadmium ion uptake in rice(Oryza sativa)cells by a wallbound form of silicon.New Phytologist,2013,200(3):691-699.
    [66]Ma J,Cai H M,He C W,Zhang W J,Wang L J.A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice(Oryza sativa)cells.New Phytologist,2015,206(3):1063-1074.
    [67]Liang Y,Wong J,Wei L.Silicon-mediated enhancement of cadmium tolerance in maize(Zea mays L.)grown in cadmium contaminated soil.Chemosphere,2005,58(4):475-483.
    [68]da Cunha K P V,do Nascimento C W A.Silicon effects on metal tolerance and structural changes in maize(Zea mays L.)grown on a cadmium and zinc enriched soil.Water,Air,&Soil Pollution,2009,197(1-4):323-330.
    [69]Vaculík M,Lux A,LuxováM,Tanimoto E,Lichtscheidl I.Silicon mitigates cadmium inhibitory effects in young maize plants.Environmental and Experimental Botany,2009,67(1):52-58.
    [70]Vaculík M,Landberg T,Greger M,LuxováM,StolárikováM,Lux A.Silicon modifies root anatomy,and uptake and subcellular distribution of cadmium in young maize plants.Annals of Botany,2012,110(2):433-443.
    [71]da Cunha K P V,do Nascimento C W A,da Silva A J.Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L.)grown on a contaminated soil.Journal of Plant Nutrition and Soil Science,2008,171(6):849-853.
    [72]KulikováZ L,Lux A.Silicon influence on maize,Zea mays L.,hybrids exposed to cadmium treatment.Bulletin of Environmental Contamination and Toxicology,2010,85(3):243-250.
    [73]LukacováZ,SvubováR,KohanováJ,Lux A.Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation,cell distribution,antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development.Plant Growth Regulation,2013,70(1):89-103.
    [74]Rizwan M,Meunier J D,Miche H,Keller C.Effect of silicon on reducing cadmium toxicity in durum wheat(Triticum turgidum L.cv.Claudio W.)grown in a soil with aged contamination.Journal of Hazardous Materials,2012,209-210:326-334.
    [75]Aery N C,Rana D K.Growth and cadmium uptake in barley under cadmium stress.Journal of Environmental Biology,2003,24(2):117-123.
    [76]Guo T R,Zhang G P,Zhou M X,Wu F B,Chen J X.Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars.Pedosphere,2007,17(4):505-512.
    [77]Treder W,Cieslinski G.Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils.Journal of Plant Nutrition,2005,28(6):917-929.
    [78]VatehováZ,KollárováK,Zelko I,Richterová-KucerováD,Bujdo2 M,Li2kováD.Interaction of silicon and cadmium in Brassica juncea and Brassica napus.Biologia,2012,67(3):498-504.
    [79]Farooq M A,Ali S,Hameed A,Ishaque W,Mahmood K,Iqbal Z.Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis,antioxidant enzymes;suppressed cadmium uptake and oxidative stress in cotton.Ecotoxicology and Environmental Safety,2013,96:242-249.
    [80]Liu J G,Zhang H M,Zhang Y X,Chai T Y.Silicon attenuates cadmium toxicity in Solanum nigrum L.by reducing cadmium uptake and oxidative stress.Plant Physiology and Biochemistry,2013,68:1-7.
    [81]Ye J,Yan C L,Liu J C,Lu H L,Liu T,Song Z F.Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata(S.,L.)Yong.Environmental Pollution,2012,162:369-373.
    [82]Zhang Q,Yan C L,Liu J C,Lu H L,Duan H H,Du J N,Wang W Y.Silicon alleviation of cadmium toxicity in mangrove(Avicennia marina)in relation to cadmium compartmentation.Journal of Plant Growth Regulation,2014,33(2):233-242.
    [83]Greger M,Kabir A H,Landberg T,Maity P J,Lindberg S.Silicate reduces cadmium uptake into cells of wheat.Environmental Pollution,2016,211:90-97.
    [84]Nwugo C C,Huerta A J.Effects of silicon nutrition on cadmium uptake,growth and photosynthesis of rice plants exposed to low-level cadmium.Plant and Soil,2008,311(1-2):73-86.
    [85]Wang S H,Wang F Y,Gao S C.Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.Environmental Science and Pollution Research,2015,22(4):2837-2845.
    [86]Tang H,Liu Y G,Gong X M,Zeng G M,Zheng B H,Wang D F,Sun Z C,Zhou L,Zeng X X.Effects of selenium and silicon on enhancing antioxidative capacity in ramie(Boehmeria nivea(L.)Gaud.)under cadmium stress.Environmental Science and Pollution Research,2015,22(13):9999-10008.
    [87]Naeem A,Saifullah,Ghafoor A,Farooq M.Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars.Journal of the Science of Food and Agriculture,2015,95(12):2467-2472.
    [88]Hussain I,Ashraf M A,Rasheed R,Asghar A,Sajid M A,Iqbal M.Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat(Triticum aestivum L.)grains.Brazilian Journal of Botany,2015,38(2):223-234.
    [89]Wang H Y,Wen S L,Chen P,Zhang L,Cen K,Sun G X.Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields.Environmental Science and Pollution Research,2016,23(4):3781-3788.
    [90]Lin H M,Fang C X,Li Y Z,Lin W W,He J Y,Lin R Y,Lin W X.Effect of silicon on grain yield of rice under cadmium-stress.Acta Physiologiae Plantarum,2016,38(7):21-28.
    [91]Wu Z C,Wang F H,Liu S,Du Y Q,Li F R,Du R Y,Wen D,Zhao J.Comparative responses to silicon and selenium in relation to cadmium uptake,compartmentation in roots,and xylem transport in flowering Chinese cabbage(Brassica campestris L.ssp.chinensis var.utilis)under cadmium stress.Environmental and Experimental Botany,2016,131:173-180.
    [92]Zhang Q,Liu J C,Lu H L,Zhao S Z,Wang W Y,Du J N,Yan C L.Effects of silicon on growth,root anatomy,radial oxygen loss(ROL)and Fe/Mn plaque of Aegiceras corniculatum(L.)Blanco seedlings exposed to cadmium.Environmental Nanotechnology,Monitoring&Management,2015,4:6-11.
    [93]Kim Y H,Khan A L,Kim D H,Lee S Y,Kim K M,Waqas M,Jung H Y,Shin J H,Kim J G,Lee I J.Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases,Oryza sativa low silicon genes,and endogenous phytohormones.BMC Plant Biology,2014,14:13.
    [94]Kabir A H,Hossain M M,Khatun M A,Mandal A,Haider S A.Role of silicon counteracting cadmium toxicity in alfalfa(Medicago sativa L.).Frontiers in Plant Science,2016,7:1117.
    [95]Zhu X F,Zheng C,Hu Y T,Jiang T,Liu Y,Dong N Y,Yang J L,Zheng S J.Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum.Plant,Cell&Environment,2011,34(7):1055-1064.
    [96]Guo B,Liu C,Ding N F,Fu Q L,Lin Y C,Li H,Li N Y.Silicon alleviates cadmium toxicity in two cypress varieties by strengthening the exodermis tissues and stimulating phenolic exudation of roots.Journal of Plant Growth Regulation,2016,35(2):420-429.
    [97]Wu J W,Guo J,Hu Y H,Gong H J.Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress.Frontiers in Plant Science,2015,6:453.
    [98]Shi G R,Zhang Z,Liu C F.Silicon influences cadmium translocation by altering subcellular distribution and chemical forms of cadmium in peanut roots.Archives of Agronomy and Soil Science,2017,63(1):117-123.
    [99]Lu H P,Zhuang P,Li Z A,Tai Y P,Zou B,Li Y W,Mc Bride M B.Contrasting effects of silicates on cadmium uptake by three dicotyledonous crops grown in contaminated soil.Environmental Science and Pollution Research,2014,21(16):9921-9930.
    [100]Wang Y C,Hu Y H,Duan Y K,Feng R,Gong H J.Silicon reduces long-term cadmium toxicities in potted garlic plants.Acta Physiologiae Plantarum,2016,38(8):211-211.
    [101]Ma J,Sheng H C,Li X L,Wang L J.i TRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice(Oryza sativa)cells.Plant Physiology and Biochemistry,2016,104:71-80.
    [102]Dresler S,Wójcik M,Bednarek W,Hanaka A,Tukiendorf A.The effect of silicon on maize growth under cadmium stress.Russian Journal of Plant Physiology,2015,62(1):86-92.
    [103]Farooq M A,Detterbeck A,Clemens S,Dietz K J.Silicon-induced reversibility of cadmium toxicity in rice.Journal of Experimental Botany,2016,67(11):3573-3585.
    [104]MalcovskáS M,DucaiováZ,MaslaňákováI,Backor M.Effect of silicon on growth,photosynthesis,oxidative status and phenolic compounds of maize(Zea mays L.)grown in cadmium excess.Water,Air,&Soil Pollution,2014,225(8):1-11.
    [105]Kovácik J,Backor M.Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess.Water,Air,&Soil Pollution,2007,185(1-4):185-193.
    [106]Michalak A.Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress.Polish Journal of Environmental Studies,2006,15(4):523-530.
    [107]张琼,刘景春,卢豪良,段罕慧,严重玲.硅对镉胁迫下红树白骨壤酚类代谢的影响.生态学杂志,2015,34(7):1892-1897.
    [108]Rad J S,Rad M S,Da Silva J A T.Effects of exogenous silicon on cadmium accumulation and biological responses of Nigella sativa L.(black cumin).Communications in Soil Science and Plant Analysis,2014,45(14):1918-1933.
    [109]Srivastava R K,Pandey P,Rajpoot R,Rani A,Gautam A,Dubey R S.Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings.Protoplasma,2015,252(4):959-975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700