用户名: 密码: 验证码:
延胡索根际土壤细菌多样性与结构对毛竹林隙面积的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of Corydalis yanhusuo rhizosphere soil bacterial community diversity and structure to gap size in a moso bamboo forest
  • 作者:李伟成 ; 盛海燕 ; 杨慧敏 ; 刘姚姚 ; 张瑞
  • 英文作者:LI Wei-cheng;SHENG Hai-yan;YANG Huimin;LIU Yao-yao;ZHANG Rui;China National Bamboo Research Center/Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province;College of Life Sciences,Southwest Forestry University;Hangzhou Environmental Protection Science Institute;
  • 关键词:林-药复合生态系统 ; 早春植物 ; 林隙 ; 生境 ; 边界立竹
  • 英文关键词:tree-herb agroforestry system;;early-spring plant;;gap;;habitat;;border bamboo
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:国家林业局竹子研究开发中心/浙江省竹子高效加工重点实验室;西南林业大学生命科学学院;杭州环境保护科学研究院;
  • 出版日期:2019-03-14 16:25
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.311
  • 基金:浙江省科技计划项目(2016F50008);; 浙江省省院合作项目(2015SY06)资助
  • 语种:中文;
  • 页:STXZ201906013
  • 页数:9
  • CN:06
  • ISSN:21-1148/Q
  • 分类号:109-117
摘要
林下经济已成为增加林地产出和提升林业效益的重要途径。为揭示毛竹林隙中早春药用植物——延胡索根际土壤细菌多样性和群落结构的变化趋势,采集大林隙400m~2、中林隙100 m~2、小林隙25 m~2和郁闭林分4类样地的延胡索根际土样,基于高通量测序结合生境参数,分析其细菌群落多样性和结构变化。结果表明,4类样地的细菌类群达35门104纲195目321科532属,大林隙和中林隙的优势土壤细菌类群OTU所占百分比的次序虽有所不同,但基本表现为酸杆菌门和变形菌门占优,绿弯菌门和放线菌门其次;小林隙和郁闭林分则以变形菌门占绝对优势,其次是放线菌门和拟杆菌门,酸杆菌门成呈弱势。同时,随着林隙面积减小,相对光照强度从全光照直至全光照的10.7%~22.5%,细菌群落在总体数量上处于下降趋势,菌种丰富度和特异性、谱系多样性、菌群多样性和菌群均匀度均下降,郁闭林分优于小林隙。菌群在门和属分类水平的OTU百分比特征与相对光照强度、空气温度的梯度分布有显著相关关系,而与土壤水分含量、空气湿度的梯度趋势相反,未发现与林隙面积、海拔及边界立竹参数的梯度关联性。因此,大中型林隙有利于延胡索根际土壤细菌群落发育,而小林隙并不合适;林隙和郁闭林分可为某些特殊条件下进行更新的菌群提供生长机会,可用土壤微生物相关指标如特征菌群来反映林隙发育过程的变化;相对光照强度和空气温度对人工开辟林隙栽培延胡索的根际土壤菌群影响显著,在调控土壤细菌群落结构和促进土壤生态系统稳定具有重要参考价值。
        Under-forest economy has become an important way to increase forest output and promote forestry economic benefit. The objective of this study was to identify changes in soil bacterial community diversity and structure in Corydalis yanhusuo( an early-spring medicinal plant) rhizosphere associated with moso bamboo forest gaps. We collected C. yanhusuo rhizosphere soil samples from plots located in large( 400 m~2),medium( 100 m~2),and small forest gaps( 25 m~2),as well as from the closed stands. High-throughput sequencing combined with habitat parameters were used to analyze the variations of soil bacterial community diversity and structure among these plots. The results showed that the soil bacterial communities in the four plots contained 35 phyla,104 classes,195 orders,321 families,and 523 genera. Although the specific rankings of the dominant groups in the soil bacterial communities of large and medium forest gaps were different,Acidobacteria and Proteobacteria were overall the most dominant taxa,followed by Chloroflexi and Actinobacteria. In small forest gaps and closed stands,Proteobacteria were dominant,followed by Actinobacteria and Bacteroidetes,while Acidobacteria was the least dominant. With the decrease of forest gap size,the relative light intensity dropped to 10.7%-22.5% of full light. The total number of taxa in bacterial communities tended to decrease,and species abundance and specificity,phylogenetic diversity,community diversity,and community evenness all decreased with the decreases of gap size. However,the closed-stand habitat was better than the small forest gaps. The operational taxonomic unit( OTU) percentages of bacterial communities at the phylum and genus levels were significantly correlated with light intensity and air temperature,but showed opposite relationship with soil moisture content and air humidity,and had no correlation with forest gap size,altitude and border bamboo parameters. Therefore,large forest gaps were the best one favoring the development of C. yanhusuo rhizosphere bacterial communities,while small forest gaps were not suitable for them. Forest gaps and closed-stand habitats can provide growth opportunities for different bacterial communities under certain conditions. Consequently,soil microbiological indicators,such as representative communities,can be used as indicators of changes in the development of forest gaps. Relative light intensity and air temperature have great impacts on rhizosphere soil bacterial communities during the artificial creation of forest gaps and cultivation of C. yanhusuo,which are important in regulating soil bacterial community structure and promoting the stability of soil ecosystems.
引文
曹成有,姚金冬,韩晓姝,等.2011.科尔沁沙地小叶锦鸡儿固沙群落土壤微生物功能多样性.应用生态学报,22(9):2309-2315.
    段文标,王丽霞,陈立新,等.2013.红松阔叶混交林林隙大小及光照对草本植物的影响.应用生态学报,24(3):614-620.
    管云云,叶钰倩,钟远标,等.2018.林窗林隙尺度对侧柏人工林土壤微生物量和功能多样性的影响.生态学报,38(2):698-710.
    李伟成,盛海燕,钟哲科,等.2006.竹林生态系统及其长期定位观测研究的重要性.林业科学,42(8):95-101.
    李伟成,杨慧敏,高贵宾,等.2018.覆盖对中小径级毛竹林地土壤细菌群落的影响.浙江大学学报:农业与生命科学版,44(1):49-58.
    刘少冲,段文标,陈立新.2014.小兴安岭阔叶红松林不同大小林隙光照时空分布特征.东北林业大学学报,42(8):46-51.
    欧江,张捷,崔宁洁,等.2014.采伐林窗对马尾松人工林土壤微生物生物量的初期影响.自然资源学报,29(12):2036-2047.
    王一,刘江,张金鑫,等.2015.辽东山区天然次生林两个不同坡向林窗光温空间分布特征.生态学杂志,34(4):933-940.
    张一平,马友鑫,刘玉洪,等.2001.哀牢山北部常绿阔叶林窗小气候空间分布特征.北京林业大学学报,23(4):80-83.
    朱良军,杨婧雯,朱辰,等.2015.林隙干扰和升温对小兴安岭红松和臭冷杉径向生长的影响.生态学杂志,34(8):2085-2095.
    Arunachalam A,Arunachalam K.2000.Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India.Plant and Soil,223:185-193.
    Chang EH,Chiu CY.2015.Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo.Applied Soil Ecology,91:1-7.
    Chazdon RL,Pearcy RW.1991.The importance of sunflecks for forest understory plants.Bioscience,41:760-766.
    Dang P,Gao Y,Liu JL,et al.2018.Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau.Science of the Total Environment,630:171-180.
    Gomoryova E,Ujhazy K,Martinak M,et al.2013.Soil microbial community response to variation in vegetation and abiotic environment in a temperate old-growth forest.Applied Soil Ecology,68:10-19.
    Hortal S,Bastida F,Armas C,et al.2013.Soil microbial community under a nurse-plant species changes in composition,biomass and activity as the nurse grows.Soil Biology and Biochemistry,64:139-146.
    James WR.1989.Seasonal and spatial variation in the light environment in a tropical dipterocarp forest and gaps.Biotropiea,21:299-302.
    Karsten RJ,Jovanovic M,Meilby H,et al.2014.Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon:Comparing reduced impact logging and natural,unmanaged forests.Forest Ecology and Management,310:663-671.
    Lauber CL,Hamady M,Knight R,et al.2009.Pyrosequencingbased assessment of soil p H as a predictor of soil bacterial community structure at the continental scale.Applied and Environmental Microbiology,75:511l-5120.
    Lusk CH,Sendall K,Kooyman R.2010.Latitude,solar elevation angles and gap-regenerating rain forest pioneers.Journal of Ecology,99:491-502.
    Muscolo A,Sidari M,Bagnato S.2010.Gap size effects on above-and below-ground processes in a silver fir stand.European Journal of Forest Research,129:355-365.
    Museolo A,Sidari M,Mercurio R.2007.Influence of gap size on organic matter decomposition,microbial biomass and nutrient cycle in Calabrian pine(Pinus laricio,Poiret)stands.Forest Ecology and Management,242:412-418.
    Narukawa Y,Yamamoto SI.2001.Gap formation,microsite variation and the conifer seedling occurrence in a subalpine old-growth forest,central Japan.Ecological Research,16:617-625.
    Petritan AM,Nuske RS,Petritan IC,et al.2013.Gap disturbance patterns in an old-growth sessile oak(Quercus petraea L.)-European beech(Fagus sylvatica L.)forest remnant in the Carpathian Mountains,Romania.Forest Ecology and Management,308:67-75.
    Reinhart KO,Royo AA,Kageyama SA,et al.2010.Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species.Acta Oecologica,36:530-536.
    Schwartz G,Lopes JCA,Mohren GMJ,et al.2013.Post-harvesting silvicultural treatments in logging gaps:A comparison between enrichment planting and tending of natural regeneration.Forest Ecology and management,293:57-64.
    Yang YG,Geng YQ,Zhou HJ,et al.2017.Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest.Pedobiologia,61:51-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700