用户名: 密码: 验证码:
飑线组织化过程对环境垂直风切变和水汽的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of Vertical Wind Shear and Moisture on the Organization of Squall Lines
  • 作者:张建军 ; 王咏青 ; 钟玮
  • 英文作者:ZHANG Jianjun;WANG Yongqing;ZHONG Wei;Hunan Climate Center;Pacific Typhoon Research Center, School of Atmospheric Sciences, Nanjing University of Information Science & Technology;Institute of Meteorology and Ocean, PLA University of Science and Technology;Key Laboratory of Mesoscale Severe Weather (Nanjing University), Ministry of Education;
  • 关键词:飑线 ; 数值模拟 ; 冷池 ; 环境垂直风切变 ; 水汽
  • 英文关键词:Squall line;;Numerical simulation;;Cold pool;;Vertical Wind Shear;;Moisture
  • 中文刊名:DQXK
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:湖南省气候中心;南京信息工程大学大气科学学院太平洋台风研究中心;解放军理工大学气象海洋学院;南京大学中尺度灾害性天气教育部重点实验室;
  • 出版日期:2016-07-15
  • 出版单位:大气科学
  • 年:2016
  • 期:v.40
  • 基金:国家重点基础研究发展计划(973计划)项目2013CB430103;; 国家自然科学基金项目41275002、41230421;; 江苏省高校自然科学研究重大项目14KJA170005;; 江苏省“333高层次人才培养工程”项目;; 灾害天气国家重点实验室开放课题(2014LASW-B08)~~
  • 语种:中文;
  • 页:DQXK201604003
  • 页数:14
  • CN:04
  • ISSN:11-1768/O4
  • 分类号:36-49
摘要
利用ARPS模式对飑线发生发展过程进行二维理想数值试验,讨论了低层环境垂直风切变和水汽条件变化时,飑线内部物理因子配置变化及其与系统强度演变的联系。研究表明,飑线发展过程中出现的动量、热量和水汽的再分配过程,造成系统内垂直环流结构和扰动温湿场分布发生变化,从而影响系统内部深对流的组织化过程和飑线强度的发展。基于低层环境垂直风切变和水汽两个要素的敏感性试验研究表明,低层环境垂直风切变增大(减小)时,飑线移速减慢(加快),冷池前沿激发的新对流与中高层的垂直运动相互贯通(分离),飑线系统强度随之增强(减弱)。此外,当低层水汽增加(减少)时,会导致输送到中层的水汽增加(减少),中层凝结潜热释放增多(减少),该层垂直运动增强(减弱);同时,飑线系统区域环境释放的对流有效位能(CAPE)增大(减小),新生对流的强度增强(减弱)。低层水汽条件通过水汽输送和能量释放,改变冷池前沿新对流与中高层垂直环流的组织化结构,从而影响飑线强度。
        The redistribution of physical factors and its impacts on the intensity of squall lines under the influence of low-level Vertical Wind Shear(VWS) and moisture content are examined through two-dimensional idealized simulations with the ARPS model(the University of Oklahoma's Advanced Research Prediction System). It shows that the redistribution of momentum, heat and moisture during the evolution of squall lines leads to the change of inner vertical circulation and the configuration of perturbation temperature and humidity, which affects the organization of deep convection and the intensity of the system. The results of sensitivity tests of low-level VWS and moisture content show that increasing(decreasing) the low-level VWS decelerates(accelerates) the propagation of the squall line, and makes the connection(separation) between the mid-level upward current and the new forced updrafts at the front edge of the cold pool, which corresponds to the intensification(weakening) of the squall line. On the other hand, increasing(decreasing) the low-level moisture content results in an increase(decrease) of moisture delivery from the low to middle level, which enhances(weakens) the mid-level latent heating and upward movement. Energy analysis indicates that the low-level moisture change influences the release of Convective Available Potential Energy(CAPE), and the intensity of the new convection. The combined effects of latent heating and CAPE released from low-level moisture change also affect the squall line intensity through exerting an influence on the organization of the upper-level upward currents and the new forced updrafts at the front edge of the cold pool.
引文
Bluestein H B,Jain M H.1985.Formation of mesoscale lines of precipitation:Severe squall lines in Oklahoma during the spring[J].J.Atmos.Sci.,42(16):1711-1732.
    Bluestein H B,Marx G T,Jain M H.1987.Formation of mesoscale lines of precipitation:Non-Severe squall lines in Oklahoma during the spring[J].Mon.Wea.Rev.,115(11):2719-2727.
    陈明轩,王迎春.2012.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报,70(3):371-386.Chen Mingxuan,Wang Yingchun.2012.Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China[J].Acta Meteorologica Sinica(in Chinese),70(3):371-386.
    Coniglio M C,Corfidi S F,Kain J S.2012.Views on applying RKW theory:An illustration using the 8 May 2009 derecho-producing convective system[J].Mon.Wea.Rev.,140(3):1023-1043.
    Fovell R G,Ogura Y.1988.Numerical simulation of a mid-latitude squall line in two dimensions[J].J.Atmos.Sci.,45(24):3846-3879.
    Fujita T.1955.Results of detailed synoptic studies of squall lines[J].Tellus,7(4):405-436.
    Houze Jr R A,Biggerstaff M I,Rutledge S A,et al.1989.Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems[J].Bull.Amer.Meteor.Soc.,70(6):608-619.
    Lin Y L,Farley R D,Orville H D.1983.Bulk parameterization of the snow field in a cloud model[J].J.Climate Appl.Meteor.,22(6):1065-1092.
    Meng Z Y,Yan D C,Zhang Y J.2013.General features of squall lines in East China[J].Mon.Wea.Rev.,141(5):1629-1647.
    Mueller C K,Carbone R E.1987.Dynamics of a thunderstorm outflow[J].JAtmos.Sci.,44(15):1879-1898.
    Newton C W.1950.Structure and mechanism of the prefrontal squall line[J].J.Meteor.,7(3):210-222.
    Parker D J.1998.The dependence of cold-pool depth on source conditions[J].Mon.Wea.Rev.,126(2):516-520.
    Parker M D.2008.Response of simulated squall lines to low-level cooling[J].J.Atmos.Sci.,65(4):1323-1341.
    Parker M D,Johnson R H.2000.Organizational modes of midlatitude mesoscale convective systems[J].Mon.Wea.Rev.,128(10):3413-3436.
    Parker M D,Johnson R H.2004.Structures and dynamics of quasi-2Dmesoscale convective systems[J].J.Atmos.Sci.,61(5):545-567.
    Rotunno R,Klemp J B,Weisman M L.1988.A theory for strong,long-lived squall lines[J].J.Atmos.Sci.,45(3):463-485.
    孙建华,郑淋淋,赵思雄.2014.水汽含量对飑线组织结构和强度影响的数值试验[J].大气科学,38(4):742-755.Sun Jianhua,Zheng Linlin,Zhao Sixiong.2014.Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments[J].Chinese Journal of Atmospheric Sciences(in Chinese),38(4):742-755.
    Takemi T.2006.Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions[J].Atmospheric Research,82(1-2):37-54.
    Takemi T.2007.A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions[J].Atmospheric Research,84(4):374-389.
    Takemi T.2014.Convection and precipitation under various stability and shear conditions:Squall lines in tropical versus midlatitude environment[J].Atmospheric Research,142:111-123.
    Thorpe A J,Miller M J,Moncrieff M W.1982.Two-dimensional convection in non-constant shear:A model of mid-latitude squall lines[J].Quart.J.Roy.Meteor.Soc.,108(458):739-762.
    Wakimoto R M.1982.The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data[J].Mon.Wea.Rev.,110(8):1060-1082.
    Weckwerth T M.2000.The effect of small-scale moisture variability on thunderstorm initiation[J].Mon.Wea.Rev.,128(12):4017-4030.
    Weisman M L,Klemp J B.1982.The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J].Mon.Wea.Rev.,110(6):504-520.
    Weisman M L,Rotunno R.2004.“A theory for strong long-lived squall lines”revisited[J].J.Atmos.Sci.,61(4):361-382.
    Wyss J,Emanuel K A.1988.The pre-storm environment of midlatitude prefrontal squall lines[J].Mon.Wea.Rev.,116(3):790-794.
    Xue M,Droegemeier K K,Wong V.2000.The Advanced Regional Prediction System(ARPS)-A multi-scale nonhydrostatic atmospheric simulation and prediction model.Part I:Model dynamics and verification[J].Meteor.Atmos.Phys.,75(3-4):161-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700