用户名: 密码: 验证码:
川东南志留系小河坝组致密砂岩储层孔隙结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pore structures of the Xiaoheba Formation tight sandstone reservoirs in southeastern Sichuan Basin, China
  • 作者:王良军 ; 张文凯 ; 胡晓文 ; 罗彦萍 ; 程立雪
  • 英文作者:WANG Liangjun;ZHANG Wenkai;HU Xiaowen;LUO Yanpin;CHENG Lixue;SINOPEC Exploration Company;State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Chengdu University of Technology;
  • 关键词:致密砂岩 ; 孔隙类型 ; 孔隙结构 ; 小河坝组 ; 四川盆地
  • 英文关键词:tight sandstone;;pore types;;pore structure;;Xiaoheba Formation;;Sichuan Basin
  • 中文刊名:CDLG
  • 英文刊名:Journal of Chengdu University of Technology(Science & Technology Edition)
  • 机构:中国石化勘探分公司;油气藏地质及开发工程国家重点实验室(成都理工大学);
  • 出版日期:2019-01-21 07:01
  • 出版单位:成都理工大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.212
  • 基金:国家科技重大专项(2016ZX05002004)
  • 语种:中文;
  • 页:CDLG201901006
  • 页数:10
  • CN:01
  • ISSN:51-1634/N
  • 分类号:72-81
摘要
针对川东南地区下志留统小河坝组致密砂岩储层,利用铸体薄片、扫描电镜、物性测试、高压压汞、恒速压汞等技术手段,结合前人的研究成果,对储层微孔隙类型和结构特征进行研究。结果表明:储层演化程度较高,原生孔隙发育较少,次生溶孔占总孔隙的80%,包括微米级粒间溶孔、微米-纳米级粒内溶孔和杂基溶孔;高压压汞屏蔽了半径较大的孔隙,表征的孔喉半径为0.01~1.26μm,半径>0.1μm的喉道所占比例<10%;恒速压汞测试表明,渗透率不同的样品孔隙半径大小及分布范围相近,孔隙半径主要集中在145μm左右,分布范围为40~260μm;喉道半径大小相差悬殊,且分布范围较大,为0.1~2.7μm。高压压汞和恒速压汞结合表征小河坝组致密砂岩的孔隙半径为0.01~260μm,喉道半径为0.01~2.7μm;致密储层孔隙度主要受单位体积有效孔隙数量、有效孔隙半径大小的影响,而渗透率主要受控于有效喉道半径的大小和分布,储层物性的差异则是这些孔-喉结构参数共同影响的综合体现。
        Thin section analysis, scanning electron microscopy(SEM), physical property testing, high-pressure mercury penetration(HPMP) and constant speed mercury penetration(CSMP) are used to study the characteristics of micro pores and structures in Lower Silurian Xiaoheba Formation tight sandstone reservoir in southeastern Sichuan Basin. The results show that there are fewer primary pores in the sandstone due to higher-evolutionary of the reservoir and most of the reservoir pores are secondary dissolved pores, including micro intergranular dissolved pore, micro-nano intragranular dissolved pore and mudstone matrix dissolved pore, which account for 80 percent of the total pore space. The small parts of pore-throat sizes characterized by HPMP range from 0.01 to 1.26 μm, and the pore-throats with the radius>0.1 μm are less than 10%. CSMP analysis reveals that for the samples with different permeability, there pore radius distribution is relatively concentrated, ranging from 40 μm to 260 μm and with the peak radius of 145 μm, whereas throat radius displays a strong diversity(0.1~2.7 μm). The whole pore-throat size distribution characteristics of tight sandstone are characterized by combination of the HPMP and CSMP methods, and the pore sizes are in the range of 0.01~260 μm and the throat sizes are 0.01~2.7 μm. It is showed that the porosity of tight reservoir is mainly influenced by the numbers of effective pores per unit volume and the effective pore radius, while the permeability is controlled by the size and distribution of the effective throat radius. All kinds of parameters of pore-throat structures have a combined effect on physical property of tight reservoir.
引文
[1] Olsen H, Briedis N A, Renshaw D. Sedimentological analysis and reservoir characterization of a multi-darcy, billion barrel oil field — The Upper Jurassic shallow marine sandstones of the Johan Sverdrup field, North Sea, Norway[J]. Marine and Petroleum Geology, 2017, 84: 102-134.
    [2] Higgs K E, Arnot M J, Browne G H, et al. Reservoir potential of late Cretaceous terrestrial to shallow marine sandstones, Taranaki Basin, New Zealand[J]. Marine and Petroleum Geology, 2010, 27(9): 1849-1871.
    [3] Halbouty M T. Giant oil and gas fields of the 1990s: An introduction[C]//Giant Oil and Gas Fields of the Decade 1990-1999, AAPG Memoir 78. Tulsa: AAPG, 2003: 1-13.
    [4] Wu L, Guan S W, Ren R, et al. Sedimentary evolution of Neoproterozoic rift basin in northern Tarim[J]. Petroleum Research, 2017, 2(4): 315-323.
    [5] Zou C N, Zhu R K, Liu K Y, et al. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 83-91.
    [6] 贾进华,邹才能.中国古生代海相碎屑岩储层与油气藏特征[J].地球科学,2012,37(2):57-66.Jia J H, Zou C N. Reservoir and oil-gas pool characteristics of Paleozoic marine clastic rocks in China[J]. Earth Science, 2012, 37(2): 57-66. (in Chinese)
    [7] Wang Y Y, Chen J F, Pang X Q, et al. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China[J]. Journal of Asian Earth Sciences, 2018, 156: 75-89.
    [8] Yin S, Ding W L, Zhou W, et al. In situ stress field evaluation of deep marine tight sandstone oil reservoir: A case study of Silurian strata in northern Tazhong area, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2017, 80: 49-69.
    [9] Zhu G Y, Zhang B T, Yang H J, et al. Origin of deep strata gas of Tazhong in Tarim Basin, China[J]. Organic Geochemistry, 2014, 74: 85-97.
    [10] Sun L D, Jiang T W, Xu H L, et al. Unsteady reservoir in Hadson Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2009, 36(1): 62-67.
    [11] 黄文明,徐邱康,刘树根,等.中国海相层系油气成藏过程与储层沥青耦合关系:以四川盆地为例[J].地质科技情报,2015,34(6):159-168.Huang W M, Xu Q K, Liu S G, et al. Coupling relationship between oil & gas accumulation process and reservoir bitumen of marine system: Taking Sichuan Basin as an example[J]. Geological Science and Technology Information, 2015, 34(6): 159-168. (in Chinese)
    [12] 宋文海.川东南下志留统小河坝砂岩含气地质条件论述——一个未来的勘探区块[J].天然气勘探与开发,1998,21(2):1-5.Song W H. The discussion of geological conditions of the Xiaoheba sandstone gas of the Lower Silurian in Southeastern Sichuan: A future exploration block[J]. Natural Gas Exploration and Development, 1998, 21(2): 1-5. (in Chinese)
    [13] 朱志军,张治波.川东-鄂西志留系层序格架下沉积体系演化特征及有利区带预测[J].科学技术与工程,2016,16(11):13-21.Zhu Z J, Zhang Z B. Depositional system evolution characteristic in the framework of sequences of Silurian and prediction of favorable zones in Eastern Sichuan-Western Hubei[J]. Science Technology and Engineering, 2016, 16(11): 13-21. (in Chinese)
    [14] 杨振武,纪凡.渝东鄂西地区志留系盆地沉积充填及储层发育特征[J].石油天然气学报,2009,31(4):166-169.Yang Z W, Ji F. The characteristics of sedimentary and packing and reserves development for Silurian basin in the East Chongqing and West Hubei area[J]. Journal of Oil and Gas Technology, 2009, 31(4): 166-169. (in Chinese)
    [15] 李斌,胡博文,石小虎,等.湘西地区志留纪沉积体系及典型前陆盆地的形成模式研究[J].地学前缘,2015,22(6):167-176.Li B, Hu B W, Shi X H, et al. Study on the Silurian sedimentary system of Western Hunan and the formation mode of typical foreland basin[J]. Earth Science Frontiers, 2015, 22(6): 167-176. (in Chinese)
    [16] 胡东风,王良军,施泽进,等.四川盆地东南部小河坝组优质储层的形成机制[J].成都理工大学学报(自然科学版),2017,44(5):543-552.Hu D F, Wang L J, Shi Z J, et al. Study on the formation mechanism of high-quality reservoir of Xiaoheba Formation in Southeast Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(5): 543-552. (in Chinese)
    [17] 朱志军,陈洪德.川东南地区志留系小河坝组砂岩特征及物源分析[J].吉林大学学报(地球科学版),2012,42(6):1590-1600.Zhu Z J, Chen H D. Sandstone characteristics and provenance analysis of the sandstone in Silurian Xiaoheba Formation in southeastern Sichuan Province, China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1590-1600. (in Chinese)
    [18] 王国茹,陈洪德,朱志军,等.川东南-湘西地区志留系小河坝组砂岩中重矿物特征及地质意义[J].成都理工大学学报(自然科学版),2011,38(1):7-14.Wang G R, Chen H D, Zhu Z J, et al. Characteristics and geological implications of heavy minerals in Lower Silurian Xiaoheba Formation sandstones in Southeast Sichuan-West Hunan[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(1): 7-14. (in Chinese)
    [19] 侯明才,陈洪德,陈安清.江南-雪峰隆起对川东南-黔南凹陷石牛栏期沉积古地理的制约[J].成都理工大学学报(自然科学版),2010,37(4):395-400.Hou M C, Chen H D, Chen A Q. Constraints of the Jiangnan-Xuefeng upheaval to the depositional system and paleogeography distribution of Southeast Sichuan-South Guizhou depression during Shiniulan Period[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(4): 395-400. (in Chinese)
    [20] 张靖宇,陆永潮,付孝悦,等.四川盆地涪陵地区五峰组-龙马溪组一段层序格架与沉积演化[J].地质科技情报,2017,36(4):65-72.Zhang J Y, Lu Y C, Fu X Y, et al. Sequence stratigraphic framework and sedimentary evolution of the Wufeng Formation-the 1st Member of Longmaxi Formation in fuling area, Sichuan Basin[J]. Geological Science and Technology Information, 2017, 36(4): 65-72. (in Chinese)
    [21] Gong X X, Shi Z J, Wang Y, et al. Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin[J]. Plos One, 2017, 12(7): 1-12.
    [22] 谢涛,郭海英,沈玉林,等.川东南小河坝组砂岩成岩作用与孔隙演化[J].天然气勘探与开发,2011,34(3):16-23.Xie T, Guo H Y, Shen Y L, et al. Diagenesis and pore evolution of Xiaoheba Formation sandstone, southeastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2011, 34(3): 16-23. (in Chinese)
    [23] 王勇,施泽进,刘亚伟,等.鄂西渝东地区石柱复向斜志留系小河坝组致密砂岩成岩作用[J].石油与天然气地质,2011,32(1):75-82.Wang Y, Shi Z J, Liu Y W, et al. Diagenesis of tight sandstone in the Silurian Xiaoheba Formation of the Shizhu Synclinorium, Western Hubei-Eastern Chongqing area[J]. Oil & Gas Geology, 2011, 32(1): 75-82. (in Chinese)
    [24] 何利,谭钦银,王瑞华,等.川东南早志留世石牛栏期沉积相、沉积模式及其演化[J].矿物岩石,2013,33(4):96-106.He L, Tan Q Y, Wang R H, et al. Sedimentary facies, sedimentary model and evolution of the Shiniulan Formation of early Silurian in the Southeast Sichuan[J]. Journal of Mineralogy and Petrology, 2013, 33(4): 96-106. (in Chinese)
    [25] 郭英海,李壮福,李大华,等.四川地区早志留世岩相古地理[J].古地理学报,2004,6(1):20-29.Guo Y H, Li Z F, Li D H, et al. Lithofacies palaeogeography of the early Silurian in Sichuan Area[J]. Journal of Palaeogeography, 2004, 6(1): 20-29. (in Chinese)
    [26] Yuan H F, Liang J J, Gong D Y, et al. Formation and evolution of Sinian oil and gas pools in typical structures, Sichuan Basin, China[J]. Petroleum Science, 2012, 9(2): 129-140.
    [27] 戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.Dai J X, Ni Y Y, Wu X Q. Tight gas in China and its significance in exploration and exploitation[J]. Natural Gas Exploration and Development, 2012, 39(3): 257-264. (in Chinese)
    [28] 曾溅辉,杨智峰,冯枭,等.致密储层油气成藏机理研究现状及其关键科学问题[J].地球科学进展,2014,29(6):651-661.Zeng J H, Yang Z F, Feng X, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651-661. (in Chinese)
    [29] 吴浩,张春林,纪友亮,等.致密砂岩孔喉大小表征及对储层物性的控制——以鄂尔多斯盆地陇东地区延长组为例[J].石油学报,2017,38(8): 876-887.Wu H, Zhang C L, Ji Y L, et al. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties: A case study of Yanchang Formation, eastern Gansu, Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 876-887. (in Chinese)
    [30] 喻建,马捷,路俊刚,等.压汞-恒速压汞在致密储层微观孔喉结构定量表征中的应用——以鄂尔多斯盆地华池-合水地区长7储层为例[J].石油实验地质,2015,37(6):789-795.Yu J, Ma J, Lu J G, et al. Application of mercury injection and rate-controlled mercury penetration in quantitative characterization of microscopic pore structure of tight reservoirs: A case study of the Chang 7 reservoir in Huachi-Heshui area, the Ordos Basin[J]. Petroleum Geology & Experiment, 2015, 37(6): 789-795. (in Chinese)
    [31] 熊伟,雷群,刘先贵,等.低渗透油藏拟启动压力梯度[J].石油勘探与开发,2009,36(2):232-236.Xiong W, Lei Q, Liu X G, et al. Pseudo threshold pressure gradient to flow for low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(2): 232-236. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700