用户名: 密码: 验证码:
以~(14)C法为基础的共燃烟气中生物质与煤的掺混比例测定方法(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of biomass-coal blending ratio by ~(14)C measurement in co-firing flue gas
  • 作者:Yu-xing ; TANG ; Zhong-yang ; LUO ; Chun-jiang ; YU ; Jian-meng ; CEN ; Qian-yuan ; CHEN ; Wen-nan ; ZHANG
  • 英文作者:Yu-xing TANG;Zhong-yang LUO;Chun-jiang YU;Jian-meng CEN;Qian-yuan CHEN;Wen-nan ZHANG;State Key Laboratory of Clean Energy Utilization, Zhejiang University;Key Lab of Nucl.phys.& Ion-beam Appl.MOE, Institute of Modern Physics, Fudan University;State Environmental Protection Key Lab on Radiation Monitoring, Ministry of Environment and Ecology;Department of Chemical Engineering, Mid Sweden University;
  • 关键词:生物质混燃烧 ; 掺混比例测量 ; 放射性碳 ; 苯合成
  • 英文关键词:Biomass co-firing;;Blending ratio determination;;Radiocarbon;;Benzene synthesis
  • 中文刊名:ZDYG
  • 英文刊名:浙江大学学报A辑(应用物理与工程)(英文版)
  • 机构:State Key Laboratory of Clean Energy Utilization, Zhejiang University;Key Lab of Nucl.phys.& Ion-beam Appl.MOE, Institute of Modern Physics, Fudan University;State Environmental Protection Key Lab on Radiation Monitoring, Ministry of Environment and Ecology;Department of Chemical Engineering, Mid Sweden University;
  • 出版日期:2019-07-03
  • 出版单位:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 年:2019
  • 期:v.20
  • 基金:Project supported by the International Cooperation Foundation for China-USA,NSFC-NSF(No.51661125012);; the National Key Research and Development Program of China(No.2017YFB0602802);; the “Bao Yu Gang” Foundation for Foreign Guest Professor Program;; the Fundamental Research Funds for the Central Universities,China
  • 语种:英文;
  • 页:ZDYG201907001
  • 页数:12
  • CN:07
  • ISSN:33-1236/O4
  • 分类号:4-15
摘要
目的:准确且可靠的生物质燃料掺混比例数据的缺失,阻碍了生物质/煤混燃发电技术在中国的发展。本文旨在建立以14C法为基础的生物质掺混比例检测系统,并研究煤作为化石燃料的测试本底、不同生物质之间14C含量的差异以及苯合成工艺中引入的现代碳污染对测试精度的影响,以验证该方法在混燃电站中实际应用的可行性。创新点:1.建立并使用适用于在工业混燃电站中应用的计算方法;2.通过实验测试,获得了3种由制样过程污染产生的煤中14C含量;3.通过对实际过程的经验拟合,提出更为合理的污染修正公式。方法:1.自主搭建苯合成系统(图2),并以液体闪光计数技术为核心形成样品14C值测试体系;2.通过实验测试,获得6种生物质与3种煤的14C测试值(图3和4),并验证混燃测试的可行性(图5);3.通过公式推导,在考虑煤中14C含量后,更为合理地修正苯合成过程中引入的污染,以减小混燃测试的绝对误差(公式(9))。结论:1.光谱级纯苯的测试值为仪器的测试本底,而商用SrC O3制苯的测试值则反应了苯合成过程中引入的污染本底。2.对不同生物质的重复实验的测试值落点均在理论计算误差范围内,证明了实验中苯合成系统的可靠性。3.运用研究中建立的计算方法,获得了生物质混燃比例的测试值;14C法应用于生物质/煤混燃电站的绝对测试误差在1%左右。
        To verify the feasibility of using radiocarbon detection for the measurement of the biomass-coal blending ratio in co-firing heat and power plants, ~(14)C activity detection technology that uses benzene synthesis as the sample preparation method and a liquid scintillation counter as the detection instrument was studied. A benzene synthesis system was built to enrich carbon in the combustion flue gas in the form of benzene. The benzene sample was mixed with scintillator(butyl-PBD) and ~(14)C activity was measured using a liquid scintillation counter(Quantulus 1220). Three kinds of coal and six kinds of biomass were tested repeatedly. The measured ~(14)C activity was 0.3365 DPM/g C in Zhundong lignite, 0.2701 DPM/gC in Shenmu bitumite, and 0.3060 DPM/gC in Changzhi anthracite. These values were much higher than the instrument background activity. For the co-fired experiment, we used groups with biomass ratios(based on the carbon) of 6.51%, 12.95%, and 20.75%. A modified empirical expression to determine the biomass, coal blending ratio based on the ~(14)C activity measured in the co-firing flue gas, was proposed by analyzing and verifying measurement accuracy. From the ~(14)C measurements of the co-fired samples, the corresponding estimated biomass ratios were(5.54±0.48)%,(12.31±0.67)%, and(19.49±0.90)%. The absolute measurement error was around 1% for a typical biomass-coal co-firing application.
引文
Agbor E,Zhang XL,Kumar A,2014.A review of biomass co-firing in North America.Renewable and Sustainable Energy Reviews,40:930-943.https://doi.org/10.1016/j.rser.2014.07.195
    ASTM(American Society for Testing and Materials),2016.Standard Test Methods for Determining the Biobased Content of Solid,Liquid,and Gaseous Samples Using Radiocarbon Analysis,ASTM D 6866-2016.National Standards of American,USA.
    Calcagnile L,Quarta G,D’Elia M,et al.,2011.Radiocarbon AMS determination of the biogenic component in CO2emitted from waste incineration.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,269(24):3158-3162.https://doi.org/10.1016/j.nimb.2011.04.020
    Contreras ML,Ganesh N,Rodilla I,et al.,2018.Assess of biomass co-firing under oxy-fuel conditions on Hg speciation and ash deposit formation.Fuel,215:395-405.https://doi.org/10.1016/j.fuel.2017.11.081
    Craig H,1954.Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature.The Journal of Geology,62(2):115-149.https://doi.org/10.1086/626141
    Fellner J,Rechberger H,2009.Abundance of 14C in biomass fractions of wastes and solid recovered fuels.Waste Management,29(5):1495-1503.https://doi.org/10.1016/j.wasman.2008.11.023
    Fuglsang K,Pedersen NH,Larsen AW,et al.,2014.Long-term sampling of CO2 from waste-to-energy plants:14C determination methodology,data variation and uncertainty.Waste Management&Research,32(2):115-123.https://doi.org/10.1177/0734242X13517159
    García-Galindo D,Royo FJ,Sebastián F,2010.Assessment of biomass co-firing potentials in coal power plants.Strojarstvo,52(4):411-427.
    Hanke UM,Wacker L,Haghipour N,et al.,2017.Comprehensive radiocarbon analysis of benzene polycarboxylic acids(BPCAs)derived from pyrogenic carbon in environmental samples.Radiocarbon,59(4):1103-1116.https://doi.org/10.1017/RDC.2017.44
    Horvatin?i?N,Bare?i?J,Broni?IK,et al.,2004.Measurement of low 14C activities in a liquid scintillation counter in the Zagreb Radiocarbon Laboratory.Radiocarbon,46(1):105-116.https://doi.org/10.1017/S0033822200039412
    Hua Q,Barbetti M,Rakowski AZ,2013.Atmospheric radiocarbon for the period 1950-2010.Radiocarbon,55(4):2059-2072.https://doi.org/10.2458/azu_js_rc.v55i2.16177
    Lazaroiu G,Frentiu T,Mihaescu L,et al.,2009.The synergistic effect in coal/biomass blend briquettes combustion on elements behavior in bottom ash using ICP-OES.Journal of Optoelectronics and Advanced Materials,11(5):713-721.
    Levin I,Kromer B,2004.The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere(1959-2003).Radiocarbon,46(3):1261-1272.https://doi.org/10.1017/S0033822200033130
    Lewis CW,Klouda GA,Ellenson WD,2004.Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville,TN.Atmospheric Environment,38(35):6053-6061.https://doi.org/10.1016/j.atmosenv.2004.06.011
    Lowe DC,1989.Problems associated with the use of coal as a source of 14C-free background material.Radiocarbon,31(2):117-120.https://doi.org/10.1017/S0033822200044775
    Lu JY,Fu LL,Li XM,et al.,2018.Capture efficiency of coal/biomass co-combustion ash in an electrostatic field.Particuology,40:80-87.https://doi.org/10.1016/j.partic.2017.10.006
    McCormac FG,Kalin RM,Long A,1992.Radiocarbon dating beyond 50,000 years by liquid scintillation counting.In:Noakes JE,Sch?nhofer F(Eds.),Liquid Scintillation Spectrometry.Radiocarbon,Tucson,USA,p.125-133.
    Mohn J,Szidat S,Fellner J,et al.,2008.Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances.Bioresource Technology,99(14):6471-6479.https://doi.org/10.1016/j.biortech.2007.11.042
    Mohn J,Szidat S,Zeyer K,et al.,2012.Fossil and biogenic CO2 from waste incineration based on a yearlong radiocarbon study.Waste Management,32(8):1516-1520.https://doi.org/10.1016/j.wasman.2012.04.002
    Mook WG,van der Plicht J,1999.Reporting 14C activities and concentrations.Radiocarbon,41(3):227-239.https://doi.org/10.1017/S0033822200057106
    Nikolov J,Krajcar Broni?I,Todorovi?N,et al.,2018.Limitation and comparison of two methods for determination of biogenic fraction in liquid fuels by 14C.Proceedings of the 14th International Symposium on Radiation Physics ISRP-14,article 98.
    Niu ZC,Zhou WJ,Feng X,et al.,2018.Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen,China.Environmental Science and Pollution Research,25(17):17109-17117.https://doi.org/10.1007/s11356-018-1616-z
    Noakes J,Norton G,Culp R,et al.,2005.A comparison of analytical methods for the certification of biobased products.Proceedings of the Liquid Scintillation Spectrometry,p.259-271.
    Norton GA,Devlin SL,2006.Determining the modern carbon content of biobased products using radiocarbon analysis.Bioresource Technology,97(16):2084-2090.https://doi.org/10.1016/j.biortech.2005.08.017
    Palstra SWL,Meijer HAJ,2010.Carbon-14 based determination of the biogenic fraction of industrial CO2 emissionsapplication and validation.Bioresource Technology,101(10):3702-3710.https://doi.org/10.1016/j.biortech.2009.12.004
    Palstra SWL,Meijer HAJ,2014.Biogenic carbon fraction of biogas and natural gas fuel mixtures determined with 14C.Radiocarbon,56(1):7-28.https://doi.org/10.2458/56.16514
    Pawlyta J,Pazdur A,Rakowski AZ,et al.,1997.Commissioning of a Quantulus 1220?liquid scintillation beta spectrometer for measuring 14C and 3H at natural abundance levels.Radiocarbon,40(1):201-209.https://doi.org/10.1017/S0033822200018051
    Quarta G,Ciceri G,Martinotti V,et al.,2015.Bringing AMSradiocarbon into the Anthropocene:potential and drawbacks in the determination of the bio-fraction in industrial emissions and in carbon-based products.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,361:521-525.https://doi.org/10.1016/j.nimb.2015.01.058
    Quarta G,Calcagnile L,Cipriano D,et al.,2018.AMS-14Cdetermination of the biogenic-fossil fractions in flue gases.Radiocarbon,60(5):1327-1333.https://doi.org/10.1017/RDC.2018.88
    Rodríguez LS,Mu?oz JMB,Zambon A,et al.,2017.Determination of the biomass content of end-of-life tyres.In:Biomass Volume Estimation and Valorization for Energy.IntechOpen,London,UK.https://doi.org/10.5772/65830
    Salma I,Németh Z,Weidinger T,et al.,2017.Source apportionment of carbonaceous chemical species to fossil fuel combustion,biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method.Atmospheric Chemistry and Physics,17(22):13767-13781.https://doi.org/10.5194/acp-17-13767-2017
    Staber W,Flamme S,Fellner J,2008.Methods for determining the biomass content of waste.Waste Management&Research,26(1):78-87.https://doi.org/10.1177/0734242X07087313
    Stachów M,2016.Radiocarbon 14C method as useful tool for flue gas monitoring application:review.Budownictwo i In?ynieria?rodowiska,7(4):247-251.
    Vogel JS,Nelson DE,Southon JR,1987.14C background levels in an accelerator mass spectrometry system.Radiocarbon,29(3):323-333.https://doi.org/10.1017/S0033822200043733
    Wolf C,Leino TJ,Stephan AR,et al.,2018.Online corrosion measurements in combination with deposit and aerosol analysis during the co-firing of straw with coal in electrically heated,small-scale pulverized fuel and circulating fluidized bed systems.Energy&Fuels,32(2):2506-2516.https://doi.org/10.1021/acs.energyfuels.7b03976
    Wu SG,2017.Variation of atmospheric 14CO2 and its spatial distribution.Journal of Environmental Radioactivity,169-170:116-121.https://doi.org/10.1016/j.jenvrad.2017.01.012
    Zhou WJ,Wu SG,Huo WW,et al.,2014.Tracing fossil fuel CO2 usingΔ14C in Xi’an City,China.Atmospheric Environment,94:538-545.https://doi.org/10.1016/j.atmosenv.2014.05.058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700